Towards derandomising Markov chain Monte Carlo

We present a new framework to derandomise certain Markov chain Monte Carlo (MCMC) algorithms. As in MCMC, we first reduce counting problems to sampling from a sequence of marginal distributions. For the latter task, we introduce a method called coupling towards the past that can, in logarithmic time...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings / annual Symposium on Foundations of Computer Science s. 1963 - 1990
Hlavní autori: Feng, Weiming, Guo, Heng, Wang, Chunyang, Wang, Jiaheng, Yin, Yitong
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 06.11.2023
Predmet:
ISSN:2575-8454
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We present a new framework to derandomise certain Markov chain Monte Carlo (MCMC) algorithms. As in MCMC, we first reduce counting problems to sampling from a sequence of marginal distributions. For the latter task, we introduce a method called coupling towards the past that can, in logarithmic time, evaluate one or a constant number of variables from a stationary Markov chain state. Since there are at most logarithmic random choices, this leads to very simple derandomisation. We provide two applications of this framework, namely efficient deterministic approximate counting algorithms for hypergraph independent sets and hypergraph colourings, under local lemma type conditions matching, up to lower order factors, their state-of-the-art randomised counterparts.
ISSN:2575-8454
DOI:10.1109/FOCS57990.2023.00120