A Multi-Head Self-Attention-based on GRU Encoder-Decoder Framework for Predicting Molten Iron Silicon Content
Silicon content is a significant index in the process of blast furnace ironmaking. It is used to measure the quality of molten iron produced.It only meets the requirements if it is too high or too low. In the production process,the silicon content in molten iron needs to be controlled within a stabl...
Uloženo v:
| Vydáno v: | Data Driven Control and Learning Systems Conference (Online) s. 1190 - 1194 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
12.05.2023
|
| Témata: | |
| ISSN: | 2767-9861 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Silicon content is a significant index in the process of blast furnace ironmaking. It is used to measure the quality of molten iron produced.It only meets the requirements if it is too high or too low. In the production process,the silicon content in molten iron needs to be controlled within a stable range.At the same time,due to the time lag, nonlinear and dynamic characteristics of blast furnace itself, it is difficult to predict the silicon content accurately. This paper proposes a multi-head self-attention-based gate recurrent unit encoder-decoder framework that can better extract global dynamic features and local features, improve prediction accuracy and pass the experimental verification. |
|---|---|
| ISSN: | 2767-9861 |
| DOI: | 10.1109/DDCLS58216.2023.10167277 |