A Multi-Head Self-Attention-based on GRU Encoder-Decoder Framework for Predicting Molten Iron Silicon Content

Silicon content is a significant index in the process of blast furnace ironmaking. It is used to measure the quality of molten iron produced.It only meets the requirements if it is too high or too low. In the production process,the silicon content in molten iron needs to be controlled within a stabl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Data Driven Control and Learning Systems Conference (Online) s. 1190 - 1194
Hlavní autoři: Cai, Yu, Yang, Chunjie, Lou, Siwei, Zeng, Zhenyu, Liao, Huanyu, Zhang, Bing
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 12.05.2023
Témata:
ISSN:2767-9861
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Silicon content is a significant index in the process of blast furnace ironmaking. It is used to measure the quality of molten iron produced.It only meets the requirements if it is too high or too low. In the production process,the silicon content in molten iron needs to be controlled within a stable range.At the same time,due to the time lag, nonlinear and dynamic characteristics of blast furnace itself, it is difficult to predict the silicon content accurately. This paper proposes a multi-head self-attention-based gate recurrent unit encoder-decoder framework that can better extract global dynamic features and local features, improve prediction accuracy and pass the experimental verification.
ISSN:2767-9861
DOI:10.1109/DDCLS58216.2023.10167277