Variational Deep Atmospheric Turbulence Correction for Video
This paper presents a novel variational deep-learning approach for video atmospheric turbulence correction. We modify and tailor a Nonlinear Activation Free Network to video restoration. By including it in a variational inference framework, we boost the model's performance and stability. This i...
Uložené v:
| Vydané v: | 2023 IEEE International Conference on Image Processing (ICIP) s. 3568 - 3572 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
08.10.2023
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper presents a novel variational deep-learning approach for video atmospheric turbulence correction. We modify and tailor a Nonlinear Activation Free Network to video restoration. By including it in a variational inference framework, we boost the model's performance and stability. This is achieved through conditioning the model on features extracted by a variational autoencoder (VAE). Furthermore, we enhance these features by making the encoder of the VAE include information pertinent to the image formation via a new loss based on the prediction of parameters of the geometrical distortion and the spatially variant blur responsible for the video sequence degradation. Experiments on a comprehensive synthetic video dataset demonstrate the effectiveness and reliability of the proposed method and validate its superiority compared to existing state-of-the-art approaches. |
|---|---|
| DOI: | 10.1109/ICIP49359.2023.10222374 |