Device Interoperability for Learned Image Compression with Weights and Activations Quantization
Learning-based image compression has improved to a level where it can outperform traditional image codecs such as HEVC and VVC in terms of coding performance. In addition to good compression performance, device interoperability is essential for a compression codec to be deployed, i.e., encoding and...
Saved in:
| Published in: | Picture Coding Symposium pp. 151 - 155 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
07.12.2022
|
| Subjects: | |
| ISSN: | 2472-7822 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Learning-based image compression has improved to a level where it can outperform traditional image codecs such as HEVC and VVC in terms of coding performance. In addition to good compression performance, device interoperability is essential for a compression codec to be deployed, i.e., encoding and decoding on different CPUs or GPUs should be error-free and with negligible performance reduction. In this paper, we present a method to solve the device interoperability problem of a state-of-the-art image compression network. We implement quantization to entropy networks which output entropy parameters. We suggest a simple method which can ensure cross-platform encoding and decoding, and can be implemented quickly with minor performance deviation, of 0.3% BD-rate, from floating point model results. |
|---|---|
| AbstractList | Learning-based image compression has improved to a level where it can outperform traditional image codecs such as HEVC and VVC in terms of coding performance. In addition to good compression performance, device interoperability is essential for a compression codec to be deployed, i.e., encoding and decoding on different CPUs or GPUs should be error-free and with negligible performance reduction. In this paper, we present a method to solve the device interoperability problem of a state-of-the-art image compression network. We implement quantization to entropy networks which output entropy parameters. We suggest a simple method which can ensure cross-platform encoding and decoding, and can be implemented quickly with minor performance deviation, of 0.3% BD-rate, from floating point model results. |
| Author | Alshina, Elena Koyuncu, Esin Kaup, Andre Solovyev, Timofey |
| Author_xml | – sequence: 1 givenname: Esin surname: Koyuncu fullname: Koyuncu, Esin email: andre.kaup@fau.de organization: Multimedia Communications and Signal Processing Friedrich-Alexander-Universität Erlangen-Nüurnberg,Erlangen,Germany – sequence: 2 givenname: Timofey surname: Solovyev fullname: Solovyev, Timofey email: esin.koyuncu@fau.de organization: Audiovisual Laboratory, Munich Research Center Huawei Technologies,Munich,Germany – sequence: 3 givenname: Elena surname: Alshina fullname: Alshina, Elena email: elena.alshina@huawei.com organization: Audiovisual Laboratory, Munich Research Center Huawei Technologies,Munich,Germany – sequence: 4 givenname: Andre surname: Kaup fullname: Kaup, Andre email: solovyev.timofey@huawei.com organization: Multimedia Communications and Signal Processing Friedrich-Alexander-Universität Erlangen-Nüurnberg,Erlangen,Germany |
| BookMark | eNo1kNtKAzEYhKMoWGvfQCQvsDX5N4fdy7JaLRRULHhZsps_baTNliRW6tNbPMzNMHzDXMwlOQt9QEJuOBtzzurb5-ZVKgFqDAxgzBnjFRPshIxqXXGlpKhBan1KBiA0FLoCuCCjlN7Zsam4rGU5IMs73PsO6SxkjP0Oo2n9xucDdX2kczQxoKWzrVkhbfrtLmJKvg_00-c1fUO_WudETbB00mW_N_nIEn35MCH7r590Rc6d2SQc_fmQLKb3i-axmD89zJrJvPDARC6kRatV3VZStvIoFJ1CXjthLDgHbSfQoHIllwJLiZ3jYLkGa6uSqa4sh-T6d9Yj4nIX_dbEw_L_kvIbnahZYg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/PCS56426.2022.10018040 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781665492577 1665492570 |
| EISSN | 2472-7822 |
| EndPage | 155 |
| ExternalDocumentID | 10018040 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i204t-5ded769b855b5555e4c6e19f4ad2ff2bc4eae6f3154e35ecf12d172dd8306c33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000926892300025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:10:43 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-5ded769b855b5555e4c6e19f4ad2ff2bc4eae6f3154e35ecf12d172dd8306c33 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10018040 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Dec.-7 |
| PublicationDateYYYYMMDD | 2022-12-07 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec.-7 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | Picture Coding Symposium |
| PublicationTitleAbbrev | PCS |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001615953 |
| Score | 1.9092625 |
| Snippet | Learning-based image compression has improved to a level where it can outperform traditional image codecs such as HEVC and VVC in terms of coding performance.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 151 |
| SubjectTerms | Codecs Decoding device interoperability Entropy Image coding Interoperability learning-based image compression neural network quantization Performance evaluation Quantization (signal) |
| Title | Device Interoperability for Learned Image Compression with Weights and Activations Quantization |
| URI | https://ieeexplore.ieee.org/document/10018040 |
| WOSCitedRecordID | wos000926892300025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5s8eCpPiq-2YPXbZvHPnKUqihIqViwt7LZnUAPpqVpBf-9s5vU4sGDOYWQEJh9zDffzjcDcCutpmkhBtxzbDy1KLkh2MCTTDo0ca60CSXzX9RopKfTbNyI1YMWBhFD8hn2_G04y3cLu_FUWd_XC9I061rQUkrWYq0doUK-ORNJowKOBll_PHwTBK99IkIc97Yf_2qjErzIY-ef_z-E7k6Px8Y_nuYI9rA8hk4DIFmzPKsTmN2jX_gs0HyLJa7qItxfjJApC5VU6fXnD9pCmN8H6hTYknkulr0HjrRipnTszm6bnlXsdUO2b8SaXZg8PkyGT7zpoMDn8SBdc-HQKZnlWohc0IWplRhlRWpcXBRxblM0KIuEcBQmAm0RxY4QjXOaIgmbJKfQLhclngFzkc1TRcEHal_TjUCJsc4JQTFu7iKjzqHr7TVb1jUyZltTXfzx_BIO_KiExBB1Be31aoPXsG8_1_NqdRNG9htRgqV_ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60Cnqqj4pv9-A1bbLZTTZHqZYWa6lYsLew2Z1AD6alaQX_vbOb1OLBgzmFkECYfcw33843Q8h9pCVOC-F7lmPzuIbIUwgbvDCJDCiWxVK5kvnDeDSS02kyrsXqTgsDAC75DNr21p3lm7leW6qsY-sFSZx1u2RPcM78Sq61pVTQOycirHXAgZ90xt03gQDbpiIw1t58_quRivMjveY__-CItLaKPDr-8TXHZAeKE9KsISStF2h5StJHsEufOqJvvoBlVYb7iyI2pa6WKr4--MBNhNqdoEqCLahlY-m7Y0lLqgpDH_Sm7VlJX9do_Vqu2SKT3tOk2_fqHgrejPl85QkDJo6STAqRCbyA6wiCJOfKsDxnmeagIMpDRFIQCtB5wAxiGmMkxhI6DM9Io5gXcE6oCXTGYww_QNqqbghLlDZGCIxyMxOo-IK0rL3SRVUlI92Y6vKP53fkoD95GabDwej5ihzaEXJpIvE1aayWa7gh-_pzNSuXt26UvwEZ1ajG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Picture+Coding+Symposium&rft.atitle=Device+Interoperability+for+Learned+Image+Compression+with+Weights+and+Activations+Quantization&rft.au=Koyuncu%2C+Esin&rft.au=Solovyev%2C+Timofey&rft.au=Alshina%2C+Elena&rft.au=Kaup%2C+Andre&rft.date=2022-12-07&rft.pub=IEEE&rft.eissn=2472-7822&rft.spage=151&rft.epage=155&rft_id=info:doi/10.1109%2FPCS56426.2022.10018040&rft.externalDocID=10018040 |