Parallel Vertex Color Update on Large Dynamic Networks

We present the first GPU-based parallel algorithm to efficiently update vertex coloring on large dynamic networks. For single GPU, we introduce the concept of loosely maintained vertex color update that reduces computation and memory requirements. For multiple GPUs, in distributed environments, we p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - International Conference on High Performance Computing s. 115 - 124
Hlavní autoři: Khanda, Arindam, Bhowmick, Sanjukta, Liang, Xin, Das, Sajal K.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2022
Témata:
ISSN:2640-0316
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present the first GPU-based parallel algorithm to efficiently update vertex coloring on large dynamic networks. For single GPU, we introduce the concept of loosely maintained vertex color update that reduces computation and memory requirements. For multiple GPUs, in distributed environments, we propose priority-based ordering of vertices to reduce the communication time. We prove the correctness of our algorithms and experimentally demonstrate that for graphs of over 16 million vertices and over 134 million edges on a single GPU, our dynamic algorithm is as much as 20x faster than state-of-the-art algorithm on static graphs. For larger graphs with over 130 million vertices and over 260 million edges, our distributed implementation with 8 GPUs produces updated color assignments within 160 milliseconds. In all cases, the proposed parallel algorithms produce comparable or fewer colors than state-of-the-art algorithms.
ISSN:2640-0316
DOI:10.1109/HiPC56025.2022.00027