Multi-task Piano Transcription with Local Relative Time Attention
Automatic music transcription (AMT) is to transcribe music audios into musical symbol representations. Recently, the Transformer-based transcription systems have shown superiority on modeling note-wise sequences. For the frame-wise transcription targets in the AMT, the attention needs to focus more...
Saved in:
| Published in: | Proceedings ... Asia-Pacific Signal and Information Processing Association Annual Summit and Conference APSIPA ASC ... (Online) pp. 966 - 971 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
31.10.2023
|
| Subjects: | |
| ISSN: | 2640-0103 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Automatic music transcription (AMT) is to transcribe music audios into musical symbol representations. Recently, the Transformer-based transcription systems have shown superiority on modeling note-wise sequences. For the frame-wise transcription targets in the AMT, the attention needs to focus more on the neighboring frames instead of notes in context. In this work, we propose a multi-task transcription system with a self-attention mechanism. The designed relative positional self-attention aims to model frame-wise short-term dependencies in audio and transcribe music of variable length. Adding the learnable attention mask on multiple attention head, the network can obtain different multi-scale attention distances for each subtask. Experiments on the MAESTRO dataset show the proposed system with the local relative time attention mechanism achieves state-of-the-art transcription performance on both frame and note metrics (frame F1 93.40%, note with offset F1 88.50%). |
|---|---|
| AbstractList | Automatic music transcription (AMT) is to transcribe music audios into musical symbol representations. Recently, the Transformer-based transcription systems have shown superiority on modeling note-wise sequences. For the frame-wise transcription targets in the AMT, the attention needs to focus more on the neighboring frames instead of notes in context. In this work, we propose a multi-task transcription system with a self-attention mechanism. The designed relative positional self-attention aims to model frame-wise short-term dependencies in audio and transcribe music of variable length. Adding the learnable attention mask on multiple attention head, the network can obtain different multi-scale attention distances for each subtask. Experiments on the MAESTRO dataset show the proposed system with the local relative time attention mechanism achieves state-of-the-art transcription performance on both frame and note metrics (frame F1 93.40%, note with offset F1 88.50%). |
| Author | Wang, Qi Liu, Mingkuan Chen, Xianhong Xiong, Mengwen |
| Author_xml | – sequence: 1 givenname: Qi surname: Wang fullname: Wang, Qi email: wangqi91@bjut.edu.cn organization: Beijing University of Technology,China – sequence: 2 givenname: Mingkuan surname: Liu fullname: Liu, Mingkuan email: chenxianhong@bjut.edu.cn organization: Beijing University of Technology,China – sequence: 3 givenname: Xianhong surname: Chen fullname: Chen, Xianhong email: wenmeng.xiong@bjut.edu.cn organization: Beijing University of Technology,China – sequence: 4 givenname: Mengwen surname: Xiong fullname: Xiong, Mengwen email: liumkuan@emails.bjut.edu.cn organization: Beijing University of Technology,China |
| BookMark | eNo1j0FLwzAYQKMoOGf_gYccvLZ-ydckzbEUnYOKxdXzyLJvGO3a0UbFf6-int7l8eCds5N-6ImxKwGZEGCvy2a1bMpyValCCZNJkJgJQGEE5EcsscYWqAABtMFjNpM6hxS-hTOWTNMLAKAEzC3MWHn_1sWQRje98ia4fuDt6PrJj-EQw9DzjxCfeT141_FH6lwM78TbsCdexkj9j3LBTneumyj545w93d601V1aPyyWVVmnQUIeU9wq8KjURgMIzPVOOzLSe2WcNFZrJG9IkABPzmxIGOWs23rMDRXkyeKcXf52AxGtD2PYu_Fz_X-NX9QdTyk |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/APSIPAASC58517.2023.10317104 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Music |
| EISBN | 9798350300673 |
| EISSN | 2640-0103 |
| EndPage | 971 |
| ExternalDocumentID | 10317104 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i204t-3d50c355b6001346f6ae72cc57a279663ec7e1e10cea7be175a9adc347e8ece93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001108741800150&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:23:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-3d50c355b6001346f6ae72cc57a279663ec7e1e10cea7be175a9adc347e8ece93 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10317104 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Oct.-31 |
| PublicationDateYYYYMMDD | 2023-10-31 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-Oct.-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings ... Asia-Pacific Signal and Information Processing Association Annual Summit and Conference APSIPA ASC ... (Online) |
| PublicationTitleAbbrev | APSIPA ASC |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003203490 |
| Score | 1.8566489 |
| Snippet | Automatic music transcription (AMT) is to transcribe music audios into musical symbol representations. Recently, the Transformer-based transcription systems... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 966 |
| SubjectTerms | Aggregates Asia Estimation Information processing Measurement Music Symbols |
| Title | Multi-task Piano Transcription with Local Relative Time Attention |
| URI | https://ieeexplore.ieee.org/document/10317104 |
| WOSCitedRecordID | wos001108741800150&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGP0iaIxeVJzxd3rgWhht127HhUg0IWQJariRtnwkxAQMDP5-2w5QDx68LTsszbel7-3r994DaKpMJcpYSx27QCoYplRLwyjj3MpMMmGD7eJ7Xw0G6WiUFVuxetDCIGIYPsOWvwxn-ZOFXftWWdtHEjhEFDWoKSUrsda-ocKZt1qJj6G59dFs58XwpcjzYdcffamWDwpv7R7xK0wlYEnv7J-rOIfoW5VHij3eXMABzhtw-sNQsAGHIbb5EvKgq6WlXn2Qwn0ACxIwabdDEN99JX0PY6Sahtsg8WIQkpdlNf8YwVvv6bX7TLdhCXTGYlFSPkli68iD8QyGCzmVGhWzNlGaKfdPw9Eq7GAntqiVQccadKYnlguFKVrM-BXU54s5XgNB6WNgMMap0WIaG-1ISUcnKGWaCaP4DUS-KuPPyg9jvCvI7R_37-DE177a8e-hXi7X-ABHdlPOVsvH8Ba_AILlm-o |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGP2iYPxxURHjb3vgWhht127HhUggTrIENNxIVz4SQgIGBn-_aweoBw_elh6WpW363r5-7z2AmgqVr1JjaM4ukAqGAdUyZZRxbmQomTDOdvEjVr1eMByGyVas7rQwiOiaz7BuH91d_nhh1rZU1rCRBDkiikMo-0Iwr5Br7UsqnFmzFe8YalsnzUaU9LtJFPVb9vJL1W1UeH33kl9xKg5N2uf__I4LqH7r8kiyR5xLOMB5Bc5-WApWoOyCm68gcspamunVjCT5FlgQh0q7M4LY-iuJLZCRoh9ug8TKQUiUZUUHZBXe2y-DVodu4xLolHkio3zseyanD6nlMFzIidSomDG-0kzlfzUcjcImNj2DWqWY8wYd6rHhQmGABkN-DaX5Yo43QFDaIBj0cJJqMfFSndOSpvZRyiAUqeK3ULWzMvosHDFGuwm5-2P8GU46g7d4FHd7r_dwatehOP8foJQt1_gIR2aTTVfLJ7eiX9DNnzE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+...+Asia-Pacific+Signal+and+Information+Processing+Association+Annual+Summit+and+Conference+APSIPA+ASC+...+%28Online%29&rft.atitle=Multi-task+Piano+Transcription+with+Local+Relative+Time+Attention&rft.au=Wang%2C+Qi&rft.au=Liu%2C+Mingkuan&rft.au=Chen%2C+Xianhong&rft.au=Xiong%2C+Mengwen&rft.date=2023-10-31&rft.pub=IEEE&rft.eissn=2640-0103&rft.spage=966&rft.epage=971&rft_id=info:doi/10.1109%2FAPSIPAASC58517.2023.10317104&rft.externalDocID=10317104 |