Engineering Massively Parallel MST Algorithms

We develop and extensively evaluate highly scalable distributed-memory algorithms for computing minimum spanning trees (MSTs). At the heart of our solutions is a scalable variant of Borůvka's algorithm. For partitioned graphs with many local edges we improve this with an effective form of contr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - IEEE International Parallel and Distributed Processing Symposium s. 691 - 701
Hlavní autoři: Sanders, Peter, Schimek, Matthias
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2023
Témata:
ISSN:1530-2075
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We develop and extensively evaluate highly scalable distributed-memory algorithms for computing minimum spanning trees (MSTs). At the heart of our solutions is a scalable variant of Borůvka's algorithm. For partitioned graphs with many local edges we improve this with an effective form of contracting local parts of the graph during a preprocessing step. We also adapt the filtering concept of the best practical sequential algorithm to develop a massively parallel Filter-Borůvka algorithm that is very useful for graphs with poor locality and high average degree. Our experiments indicate that our algorithms scale well up to at least 65 536 cores and are up to 800 times faster than previous distributed MST algorithms.
ISSN:1530-2075
DOI:10.1109/IPDPS54959.2023.00075