Fair Algorithms for Hierarchical Agglomerative Clustering
Hierarchical Agglomerative Clustering (HAC) algorithms are extensively utilized in modern data science, and seek to partition the dataset into clusters while generating a hierarchical relationship between the data samples. HAC algorithms are employed in many applications, such as biology, natural la...
Saved in:
| Published in: | 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA) pp. 206 - 211 |
|---|---|
| Main Authors: | , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.12.2022
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Hierarchical Agglomerative Clustering (HAC) algorithms are extensively utilized in modern data science, and seek to partition the dataset into clusters while generating a hierarchical relationship between the data samples. HAC algorithms are employed in many applications, such as biology, natural language processing, and recommender systems. Thus, it is imperative to ensure that these algorithms are fair- even if the dataset contains biases against certain protected groups, the cluster outputs generated should not discriminate against samples from any of these groups. However, recent work in clustering fairness has mostly focused on center-based clustering algorithms, such as k-median and k-means clustering. In this paper, we propose fair algorithms for performing HAC that enforce fairness constraints 1) irrespective of the distance linkage criteria used, 2) generalize to any natural measures of clustering fairness for HAC, 3) work for multiple protected groups, and 4) have competitive running times to vanilla HAC. Through extensive experiments on multiple real-world UCI datasets, we show that our proposed algorithm finds fairer clusterings compared to vanilla HAC as well as the only other state-of-the-art fair HAC approach. |
|---|---|
| AbstractList | Hierarchical Agglomerative Clustering (HAC) algorithms are extensively utilized in modern data science, and seek to partition the dataset into clusters while generating a hierarchical relationship between the data samples. HAC algorithms are employed in many applications, such as biology, natural language processing, and recommender systems. Thus, it is imperative to ensure that these algorithms are fair- even if the dataset contains biases against certain protected groups, the cluster outputs generated should not discriminate against samples from any of these groups. However, recent work in clustering fairness has mostly focused on center-based clustering algorithms, such as k-median and k-means clustering. In this paper, we propose fair algorithms for performing HAC that enforce fairness constraints 1) irrespective of the distance linkage criteria used, 2) generalize to any natural measures of clustering fairness for HAC, 3) work for multiple protected groups, and 4) have competitive running times to vanilla HAC. Through extensive experiments on multiple real-world UCI datasets, we show that our proposed algorithm finds fairer clusterings compared to vanilla HAC as well as the only other state-of-the-art fair HAC approach. |
| Author | Chhabra, Anshuman Mohapatra, Prasant |
| Author_xml | – sequence: 1 givenname: Anshuman surname: Chhabra fullname: Chhabra, Anshuman email: chhabra@ucdavis.edu organization: University of California, Davis,Department of Computer Science,Davis,California,USA – sequence: 2 givenname: Prasant surname: Mohapatra fullname: Mohapatra, Prasant email: pmohapatra@ucdavis.edu organization: University of California, Davis,Department of Computer Science,Davis,California,USA |
| BookMark | eNotjs1KxDAURiPowhl9A4W8QOvNz02TZSmOM1Bxo-vhtk06gf5IWgXf3oKuPjgcDt-OXU_z5Bl7FJALAe7pVL3WJaJxJpcgZQ4AylyxnTAGtZFWqVvmDhQTL4d-TnG9jAsPc-LH6BOl9hJbGnjZ98M8bmCN355Xw9ey-hSn_o7dBBoWf_-_e_ZxeH6vjln99nKqyjqLEvSaCWy0RYutFQ6tkiS2EyF4JDSCXAcuaKNbFbpQdAWZJihC56HZZEJs1J49_HWj9_78meJI6ecsAIyTolC_GEdEag |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICMLA55696.2022.00036 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665462833 9781665462839 |
| EndPage | 211 |
| ExternalDocumentID | 10069217 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i204t-15b48585c8195832a1036ffe5a561a9d09f464c3fdf7d7a6bf3a59e0b583a55b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000980994900029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jan 18 11:14:48 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i204t-15b48585c8195832a1036ffe5a561a9d09f464c3fdf7d7a6bf3a59e0b583a55b3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10069217 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Dec. |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec. |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA) |
| PublicationTitleAbbrev | ICMLA |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.884305 |
| Snippet | Hierarchical Agglomerative Clustering (HAC) algorithms are extensively utilized in modern data science, and seek to partition the dataset into clusters while... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 206 |
| SubjectTerms | Clustering Clustering algorithms Costs Couplings Data science Fairness in Clustering Hierarchical Agglomerative Clustering Machine learning Measurement Natural language processing |
| Title | Fair Algorithms for Hierarchical Agglomerative Clustering |
| URI | https://ieeexplore.ieee.org/document/10069217 |
| WOSCitedRecordID | wos000980994900029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECa28eBJjWt8h4NXlC6w7BybxqYm2vSgSW8Nu0DdZO2avn6_DF0fFw_eCCGQgQzzwcw3Q8itSnNuhc8ZOvWYBAEMQALTrlSeGyiEsrHYhB6P8-kUJi1ZPXJhnHMx-MzdYTP68m1TbvCrLGg4zyBg6A7paJ3tyFotK6fH4f5x8PzUVyoDDD1IYyJOzLz8q2pKNBrDw38ud0SSH_odnXwblmOy5xYnBIamWtJ-PW_Cc_7tfUUD2qSjCvnDsZxJTfvzed3gHxPeYHRQbzAHQpggIa_Dh5fBiLV1D1iVcrlmPVVIdNeV6OMKGmd6QQ7vnTIB7BiwHLzMZCm89dpqkxVeGAWOF2GwUaoQp6S7aBbujNAAb1zuRSoMSCm9Nj4vBXjrco38K39OEpR79rFLbTH7Evnij_5LcoBbu4vnuCLd9XLjrsl-uV1Xq-VNPJBPtluNOw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECZaTfSkxhrfcvCK0gV2d45NY9PGtumhJr017AJ1k3XX9OHvl6H1cfHgjRACGcgwH8x8M4TcqyjlRriUoVOPSRDAACSwxObKcQ2ZUCYUm0hGo3Q6hfGWrB64MNbaEHxmH7AZfPmmztf4VeY1nMfgMfQu2VNSRnxD19ryclocHvud4aCtVAwYfBCFVJyYe_lX3ZRgNrpH_1zwmDR_CHh0_G1aTsiOrU4JdHWxoO1yXvsH_evbknq8SXsFMohDQZOStufzssZfJrzDaKdcYxYEP0GTvHSfJp0e21Y-YEXE5Yq1VCbRYZejl8vrnG55OZyzSnu4o8FwcDKWuXDGJSbRceaEVmB55gdrpTJxRhpVXdlzQj3AsakTkdAgpXSJdmkuwBmbJsjAchekiXLP3jfJLWZfIl_-0X9HDnqT4WA26I-er8ghbvMmuuOaNFaLtb0h-_nHqlgubsPhfAJAwJCC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+21st+IEEE+International+Conference+on+Machine+Learning+and+Applications+%28ICMLA%29&rft.atitle=Fair+Algorithms+for+Hierarchical+Agglomerative+Clustering&rft.au=Chhabra%2C+Anshuman&rft.au=Mohapatra%2C+Prasant&rft.date=2022-12-01&rft.pub=IEEE&rft.spage=206&rft.epage=211&rft_id=info:doi/10.1109%2FICMLA55696.2022.00036&rft.externalDocID=10069217 |