Lossy Scientific Data Compression With SPERR
As the need for data reduction in high-performance computing (HPC) continues to grow, we introduce a new and highly effective tool to help achieve this goal-SPERR. SPERR is a versatile lossy compressor for structured scientific data; it is built on top of an advanced wavelet compression algorithm, S...
Uloženo v:
| Vydáno v: | Proceedings - IEEE International Parallel and Distributed Processing Symposium s. 1007 - 1017 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.05.2023
|
| Témata: | |
| ISSN: | 1530-2075 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | As the need for data reduction in high-performance computing (HPC) continues to grow, we introduce a new and highly effective tool to help achieve this goal-SPERR. SPERR is a versatile lossy compressor for structured scientific data; it is built on top of an advanced wavelet compression algorithm, SPECK, and provides additional capabilities valued in HPC environments. These capabilities include parallel execution for large volumes and a compression mode that satisfies a maximum point-wise error tolerance. Evaluation shows that in most settings SPERR achieves the best rate-distortion trade-off among current popular lossy scientific data compressors. |
|---|---|
| ISSN: | 1530-2075 |
| DOI: | 10.1109/IPDPS54959.2023.00104 |