Noise Cleaning of ECG on Edge Device Using Convolutional Sparse Contractive Autoencoder

Single-lead Electrocardiogram (ECG) can be easily measured by a commercial smartwatch or a dedicated wearable device. The waveforms are often susceptible to background noise and motion artifacts introducing errors in disease interpretation. An effective yet light-weight de-noising of ECG is an open...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) S. 491 - 496
Hauptverfasser: Banerjee, Rohan, Mukherjee, Ayan, Ghose, Avik
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 21.03.2022
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Single-lead Electrocardiogram (ECG) can be easily measured by a commercial smartwatch or a dedicated wearable device. The waveforms are often susceptible to background noise and motion artifacts introducing errors in disease interpretation. An effective yet light-weight de-noising of ECG is an open area of research. In this paper, we propose a novel convolutional autoencoder structure considering a number of regularization terms like sparsity constraint, contractive regularization and L2 norm for ECG de-noising. The deep learning model is duly optimized to efficiently run on low-power edge devices. The proposed approach is evaluated on a simulated and a real-world single-lead ECG database recorded from normal subjects as well as patients having Atrial Fibrillation (AF) and other kinds of abnormal heart rhythms. A thorough comparison is performed with a number of related signal processing and deep learning based prior approaches. Experimental results show that the proposed autoencoder yields the least Root Mean Square Error (RMSE) in reconstruction of clean signals from input ECG corrupted due to addition of noise. Our approach is also able to preserve the relevant morphological properties in the reconstructed ECG data for successful detection of AF and other abnormal rhythms. The optimized model is deployed on a low-power single-board computer for real-time noise cleaning.
AbstractList Single-lead Electrocardiogram (ECG) can be easily measured by a commercial smartwatch or a dedicated wearable device. The waveforms are often susceptible to background noise and motion artifacts introducing errors in disease interpretation. An effective yet light-weight de-noising of ECG is an open area of research. In this paper, we propose a novel convolutional autoencoder structure considering a number of regularization terms like sparsity constraint, contractive regularization and L2 norm for ECG de-noising. The deep learning model is duly optimized to efficiently run on low-power edge devices. The proposed approach is evaluated on a simulated and a real-world single-lead ECG database recorded from normal subjects as well as patients having Atrial Fibrillation (AF) and other kinds of abnormal heart rhythms. A thorough comparison is performed with a number of related signal processing and deep learning based prior approaches. Experimental results show that the proposed autoencoder yields the least Root Mean Square Error (RMSE) in reconstruction of clean signals from input ECG corrupted due to addition of noise. Our approach is also able to preserve the relevant morphological properties in the reconstructed ECG data for successful detection of AF and other abnormal rhythms. The optimized model is deployed on a low-power single-board computer for real-time noise cleaning.
Author Ghose, Avik
Mukherjee, Ayan
Banerjee, Rohan
Author_xml – sequence: 1
  givenname: Rohan
  surname: Banerjee
  fullname: Banerjee, Rohan
  email: rohan.banerjee@tcs.com
  organization: TCS Research,Tata Consultancy Services
– sequence: 2
  givenname: Ayan
  surname: Mukherjee
  fullname: Mukherjee, Ayan
  email: ayan.m4@tcs.com
  organization: TCS Research,Tata Consultancy Services
– sequence: 3
  givenname: Avik
  surname: Ghose
  fullname: Ghose, Avik
  email: avik.ghose@tcs.com
  organization: TCS Research,Tata Consultancy Services
BookMark eNotj01LAzEURSPowlZ_gZtsXcyYj0nSWZaxVqGooKXLkiYvNTjNGzLTAf-9Fru6cA_3wJ2Qy4QJCLnnrOSc1Q_vkBs8bDB_91_Y9UrOlC4FE6KsjTaSywsy4VqriuvKqGuyecXYA21asCmmPcVAF82SYqILvwf6CGN0QNf9iTWYRmyPQ8RkW_rR2XxaYhqydUMcgc6PA0Jy6CHfkKtg2x5uzzkl66fFZ_NcrN6WL818VUTB5FAE76wJTHPHuFUKDATBPdRCeuFq7pnRYees3lWaGeNc4OGvkqqaBWVrW8kpufv3RgDYdjkebP7Znr_KXwegVDk
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PerComWorkshops53856.2022.9767313
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665416475
9781665416474
EndPage 496
ExternalDocumentID 9767313
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-fdca7f061c01a55e7ef21de923d2c91d076fbca6b46077ccf1f0763548f5a9a43
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000821801200108&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:37:20 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-fdca7f061c01a55e7ef21de923d2c91d076fbca6b46077ccf1f0763548f5a9a43
PageCount 6
ParticipantIDs ieee_primary_9767313
PublicationCentury 2000
PublicationDate 2022-March-21
PublicationDateYYYYMMDD 2022-03-21
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-March-21
  day: 21
PublicationDecade 2020
PublicationTitle 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops)
PublicationTitleAbbrev PerCom Workshops
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8245567
Snippet Single-lead Electrocardiogram (ECG) can be easily measured by a commercial smartwatch or a dedicated wearable device. The waveforms are often susceptible to...
SourceID ieee
SourceType Publisher
StartPage 491
SubjectTerms Autoencoder
Computational modeling
Conferences
Convolution
Convolutional Neural Network
Deep learning
Electrocardiogram
Electrocardiography
Heart beat
Noise cleaning
Noise reduction
TinyML
Title Noise Cleaning of ECG on Edge Device Using Convolutional Sparse Contractive Autoencoder
URI https://ieeexplore.ieee.org/document/9767313
WOSCitedRecordID wos000821801200108&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA5ziPiksom_yYMvgt3aNG3aR5mbPsgYqLi3kSYXHYymtN3-fnNdmQi--BYOksAlx-Uu331HyG3KEb3Auedi5NTjyo0yJ_FYmBnNTSy5btj1X8R0mszn6axD7ne1MADQgM9ggMPmL19btcZU2dC5ThFii9o9IeJtrdYBuWtpM4czKJ0NYY65-rJF5Sw5QgwCY4N23q8GKo3_mBz9b-dj0v8pxKOznYs5IR3Ie-RjapcV0NEKJCY1qDV0PHqiNqdj_Qn0EdD4aYMFoG6dTXu55Iq-Fi6MBRTWTXHUBujDurbIZamh7JP3yfht9Oy1_RG8JfPD2jNaSWGcQ1Z-IKMIBBgWaHBPNs1UGminfpMpGWc89oVQygTGR_45nphIppKHp6Sb2xzOCDVSySAEg2z5PFE6TZIshESxIIxkrJNz0kOlLIotBcai1cfF3-JLcoh6R6gWC65Ity7XcE321aZeVuVNc27fAquceA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_GFPVJZRO_zYMvgt3aNP16lLk5cZaBE_c20uSig9GOttvfb9KVieCLb-EgCeRyXO7yu98B3EbMoBcYs3SMHFlM6FGiJRZ1EyWZ8jmTFbv-KIjjcDqNxg2439bCIGIFPsOOGVZ_-TITK5Mq62rXGbimRe2Oxxi1N9Vae3BXE2d2x5hrKzJZ5uIrWxbalj2DQqC0U8_81UKl8iCDw__tfQTtn1I8Mt46mWNoYNqCjzibF0h6C-QmrUEyRfq9J5KlpC8_kTyiMX9SoQGIXmddXy--IG9LHciiEZZVedQaycOqzAybpcS8De-D_qQ3tOoOCdac2m5pKSl4oLRLFrbDPQ8DVNSRqB9tkorIkVoBKhHcT5hvB4EQylG2YaBjofJ4xJl7As00S_EUiOKCOy4qw5fPQiGjMExcDAV1XI_7MjyDljmU2XJDgjGrz-P8b_EN7A8nr6PZ6Dl-uYADowMD3KLOJTTLfIVXsCvW5bzIrysdfgNRpZ-_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Pervasive+Computing+and+Communications+Workshops+and+other+Affiliated+Events+%28PerCom+Workshops%29&rft.atitle=Noise+Cleaning+of+ECG+on+Edge+Device+Using+Convolutional+Sparse+Contractive+Autoencoder&rft.au=Banerjee%2C+Rohan&rft.au=Mukherjee%2C+Ayan&rft.au=Ghose%2C+Avik&rft.date=2022-03-21&rft.pub=IEEE&rft.spage=491&rft.epage=496&rft_id=info:doi/10.1109%2FPerComWorkshops53856.2022.9767313&rft.externalDocID=9767313