EEG-Transformer: Self-attention from Transformer Architecture for Decoding EEG of Imagined Speech

Transformers are groundbreaking architectures that have changed a flow of deep learning, and many high-performance models are developing based on transformer architectures. Transformers implemented only with attention with encoder-decoder structure following seq2seq without using RNN, but had better...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ... International Winter Conference on Brain-Computer Interface S. 1 - 4
Hauptverfasser: Lee, Young-Eun, Lee, Seo-Hyun
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 21.02.2022
Schlagworte:
ISSN:2572-7672
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!