Remarks on System Identification Using a Quaternion Recurrent Neural Network Trained by Backpropagation through Time
This study investigates the learning capability of a quaternion recurrent neural network that is trained based on a backpropagation through time algorithm extended to quaternion numbers. Computational experiments to identify nonlinear systems, e.g. a three-dimensional chaotic system and discrete-tim...
Uloženo v:
| Vydáno v: | Australian and New Zealand Control Conference (Online) s. 122 - 125 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
25.11.2021
|
| Témata: | |
| ISSN: | 2767-7257 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This study investigates the learning capability of a quaternion recurrent neural network that is trained based on a backpropagation through time algorithm extended to quaternion numbers. Computational experiments to identify nonlinear systems, e.g. a three-dimensional chaotic system and discrete-time plant, were performed, and the simulation results confirmed the feasibility of using the quaternion recurrent neural network for a control system application. |
|---|---|
| ISSN: | 2767-7257 |
| DOI: | 10.1109/ANZCC53563.2021.9628201 |