Remarks on System Identification Using a Quaternion Recurrent Neural Network Trained by Backpropagation through Time
This study investigates the learning capability of a quaternion recurrent neural network that is trained based on a backpropagation through time algorithm extended to quaternion numbers. Computational experiments to identify nonlinear systems, e.g. a three-dimensional chaotic system and discrete-tim...
Gespeichert in:
| Veröffentlicht in: | Australian and New Zealand Control Conference (Online) S. 122 - 125 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
25.11.2021
|
| Schlagworte: | |
| ISSN: | 2767-7257 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This study investigates the learning capability of a quaternion recurrent neural network that is trained based on a backpropagation through time algorithm extended to quaternion numbers. Computational experiments to identify nonlinear systems, e.g. a three-dimensional chaotic system and discrete-time plant, were performed, and the simulation results confirmed the feasibility of using the quaternion recurrent neural network for a control system application. |
|---|---|
| ISSN: | 2767-7257 |
| DOI: | 10.1109/ANZCC53563.2021.9628201 |