An effective compensating approach to the synthesis of sparse array with element-failures
The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) Algorithm is used to compensate the failure of sparse array element. A fitness function is introduced to restrict the error between pre-failed pattern and measured pattern. To minimize the function we have introduced CMA-ES algorithm. S...
Gespeichert in:
| Veröffentlicht in: | 2019 International Applied Computational Electromagnetics Society Symposium - China (ACES) Jg. 1; S. 1 - 2 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
Applied Computational Electromagnetics Society
01.08.2019
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) Algorithm is used to compensate the failure of sparse array element. A fitness function is introduced to restrict the error between pre-failed pattern and measured pattern. To minimize the function we have introduced CMA-ES algorithm. Several numerical results demonstrate the ability of this array failure compensation algorithm. |
|---|---|
| DOI: | 10.23919/ACES48530.2019.9060496 |