An effective compensating approach to the synthesis of sparse array with element-failures

The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) Algorithm is used to compensate the failure of sparse array element. A fitness function is introduced to restrict the error between pre-failed pattern and measured pattern. To minimize the function we have introduced CMA-ES algorithm. S...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2019 International Applied Computational Electromagnetics Society Symposium - China (ACES) Ročník 1; s. 1 - 2
Hlavní autoři: Qin, Anqi, Sheng, Yijun
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Applied Computational Electromagnetics Society 01.08.2019
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) Algorithm is used to compensate the failure of sparse array element. A fitness function is introduced to restrict the error between pre-failed pattern and measured pattern. To minimize the function we have introduced CMA-ES algorithm. Several numerical results demonstrate the ability of this array failure compensation algorithm.
DOI:10.23919/ACES48530.2019.9060496