2(1 - 1/ℓ)-Factor Steiner Tree Approximation in Õ(n^1/3) Rounds in the CONGESTED CLIQUE
We study the Steiner tree problem in the CONGESTED CLIQUE model of distributed computing. We present a deterministic distributed approximation algorithm that computes a Steiner tree in Õ(n^1/3) rounds and Õ(n^7/3) messages for a given undirected weighted graph of n nodes with the approximation facto...
Gespeichert in:
| Veröffentlicht in: | International Symposium on Computing and Networking (Online) S. 82 - 91 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.11.2019
|
| Schlagworte: | |
| ISSN: | 2379-1896 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We study the Steiner tree problem in the CONGESTED CLIQUE model of distributed computing. We present a deterministic distributed approximation algorithm that computes a Steiner tree in Õ(n^1/3) rounds and Õ(n^7/3) messages for a given undirected weighted graph of n nodes with the approximation factor 2(1 - 1/ℓ) of the optimal, where ℓ is the number of terminal leaf nodes in the optimal Steiner tree. Note here that the Õ(⋅) notation hides polylogarithmic factors in n. To the best of our knowledge, this is the first work to study the Steiner tree problem in the CONGESTED CLIQUE model. |
|---|---|
| ISSN: | 2379-1896 |
| DOI: | 10.1109/CANDAR.2019.00018 |