2(1 - 1/ℓ)-Factor Steiner Tree Approximation in Õ(n^1/3) Rounds in the CONGESTED CLIQUE

We study the Steiner tree problem in the CONGESTED CLIQUE model of distributed computing. We present a deterministic distributed approximation algorithm that computes a Steiner tree in Õ(n^1/3) rounds and Õ(n^7/3) messages for a given undirected weighted graph of n nodes with the approximation facto...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Symposium on Computing and Networking (Online) s. 82 - 91
Hlavní autoři: Saikia, Parikshit, Karmakar, Sushanta
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.11.2019
Témata:
ISSN:2379-1896
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the Steiner tree problem in the CONGESTED CLIQUE model of distributed computing. We present a deterministic distributed approximation algorithm that computes a Steiner tree in Õ(n^1/3) rounds and Õ(n^7/3) messages for a given undirected weighted graph of n nodes with the approximation factor 2(1 - 1/ℓ) of the optimal, where ℓ is the number of terminal leaf nodes in the optimal Steiner tree. Note here that the Õ(⋅) notation hides polylogarithmic factors in n. To the best of our knowledge, this is the first work to study the Steiner tree problem in the CONGESTED CLIQUE model.
ISSN:2379-1896
DOI:10.1109/CANDAR.2019.00018