2(1 - 1/ℓ)-Factor Steiner Tree Approximation in Õ(n^1/3) Rounds in the CONGESTED CLIQUE
We study the Steiner tree problem in the CONGESTED CLIQUE model of distributed computing. We present a deterministic distributed approximation algorithm that computes a Steiner tree in Õ(n^1/3) rounds and Õ(n^7/3) messages for a given undirected weighted graph of n nodes with the approximation facto...
Uloženo v:
| Vydáno v: | International Symposium on Computing and Networking (Online) s. 82 - 91 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.11.2019
|
| Témata: | |
| ISSN: | 2379-1896 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study the Steiner tree problem in the CONGESTED CLIQUE model of distributed computing. We present a deterministic distributed approximation algorithm that computes a Steiner tree in Õ(n^1/3) rounds and Õ(n^7/3) messages for a given undirected weighted graph of n nodes with the approximation factor 2(1 - 1/ℓ) of the optimal, where ℓ is the number of terminal leaf nodes in the optimal Steiner tree. Note here that the Õ(⋅) notation hides polylogarithmic factors in n. To the best of our knowledge, this is the first work to study the Steiner tree problem in the CONGESTED CLIQUE model. |
|---|---|
| ISSN: | 2379-1896 |
| DOI: | 10.1109/CANDAR.2019.00018 |