Hybrid Quantum-Classical Autoencoders for End-to-End Radio Communication

Quantum neural networks are emerging as poten-tial candidates to leverage noisy quantum processing units for applications. Here we introduce hybrid quantum-classical au-to encoders for end-to-end radio communication. In the physical layer of classical wireless systems, we study the performance of si...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 IEEE/ACM 7th Symposium on Edge Computing (SEC) s. 468 - 473
Hlavní autoři: Tabi, Zsolt, Bako, Bence, Nagy, Daniel T. R., Vaderna, Peter, Kallus, Zsofia, Haga, Peter, Zimboras, Zoltan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2022
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Quantum neural networks are emerging as poten-tial candidates to leverage noisy quantum processing units for applications. Here we introduce hybrid quantum-classical au-to encoders for end-to-end radio communication. In the physical layer of classical wireless systems, we study the performance of simulated architectures for standard encoded radio signals over a noisy channel. We implement a hybrid model, where a quantum decoder in the receiver works with a classical encoder in the transmitter part. Besides learning a latent space representation of the input symbols with good robustness against signal degradation, a generalized data re-uploading scheme for the qubit-based circuits allows to meet inference-time constraints of the application.
DOI:10.1109/SEC54971.2022.00071