Hybrid Quantum-Classical Autoencoders for End-to-End Radio Communication

Quantum neural networks are emerging as poten-tial candidates to leverage noisy quantum processing units for applications. Here we introduce hybrid quantum-classical au-to encoders for end-to-end radio communication. In the physical layer of classical wireless systems, we study the performance of si...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2022 IEEE/ACM 7th Symposium on Edge Computing (SEC) s. 468 - 473
Hlavní autori: Tabi, Zsolt, Bako, Bence, Nagy, Daniel T. R., Vaderna, Peter, Kallus, Zsofia, Haga, Peter, Zimboras, Zoltan
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2022
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Quantum neural networks are emerging as poten-tial candidates to leverage noisy quantum processing units for applications. Here we introduce hybrid quantum-classical au-to encoders for end-to-end radio communication. In the physical layer of classical wireless systems, we study the performance of simulated architectures for standard encoded radio signals over a noisy channel. We implement a hybrid model, where a quantum decoder in the receiver works with a classical encoder in the transmitter part. Besides learning a latent space representation of the input symbols with good robustness against signal degradation, a generalized data re-uploading scheme for the qubit-based circuits allows to meet inference-time constraints of the application.
AbstractList Quantum neural networks are emerging as poten-tial candidates to leverage noisy quantum processing units for applications. Here we introduce hybrid quantum-classical au-to encoders for end-to-end radio communication. In the physical layer of classical wireless systems, we study the performance of simulated architectures for standard encoded radio signals over a noisy channel. We implement a hybrid model, where a quantum decoder in the receiver works with a classical encoder in the transmitter part. Besides learning a latent space representation of the input symbols with good robustness against signal degradation, a generalized data re-uploading scheme for the qubit-based circuits allows to meet inference-time constraints of the application.
Author Haga, Peter
Bako, Bence
Kallus, Zsofia
Tabi, Zsolt
Vaderna, Peter
Zimboras, Zoltan
Nagy, Daniel T. R.
Author_xml – sequence: 1
  givenname: Zsolt
  surname: Tabi
  fullname: Tabi, Zsolt
  email: zsolttabi@ik.elte.hu
  organization: Eötvös Loránd University,Budapest,Hungary
– sequence: 2
  givenname: Bence
  surname: Bako
  fullname: Bako, Bence
  email: bako.bence@wigner.hu
  organization: Eötvös Loránd University,Budapest,Hungary
– sequence: 3
  givenname: Daniel T. R.
  surname: Nagy
  fullname: Nagy, Daniel T. R.
  email: daniel.a.nagy@ericsson.com
  organization: Eötvös Loránd University,Budapest,Hungary
– sequence: 4
  givenname: Peter
  surname: Vaderna
  fullname: Vaderna, Peter
  email: peter.vaderna@ericsson.com
  organization: Ericsson Research,Budapest,Hungary
– sequence: 5
  givenname: Zsofia
  surname: Kallus
  fullname: Kallus, Zsofia
  email: zsofia.kallus@ericsson.com
  organization: Ericsson Research,Budapest,Hungary
– sequence: 6
  givenname: Peter
  surname: Haga
  fullname: Haga, Peter
  email: peter.haga@ericsson.com
  organization: Ericsson Research,Budapest,Hungary
– sequence: 7
  givenname: Zoltan
  surname: Zimboras
  fullname: Zimboras, Zoltan
  email: zimboras.zoltan@wigner.hu
  organization: Eötvös Loránd University,Budapest,Hungary
BookMark eNotjMtKxDAUQCPoQsf5gtnkB1Jz0yRtlkOpjjAgvtbDbXILgTaRPhbz9xZ0dRbncB7YbcqJGDuALACke_psG6NdBYWSShVSygpu2N5VNVhrdG0B6nt2Ol27KQb-vmJa1lE0A85z9Djw47pkSj4Hmmbe54m3KYgliw38A0PMvMnjuKYtXmJOj-yux2Gm_T937Pu5_WpO4vz28toczyIqWS6CHBqjCTuptC-VdqZ3MvRgCHSl7Cb6TlMICA6k950LZINBtJq8sgrLHTv8fSMRXX6mOOJ0vTjnrNV1-QvugEqs
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SEC54971.2022.00071
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665486118
1665486112
EndPage 473
ExternalDocumentID 9996648
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-e9a554eab024c32495f90df15e14726eabfb4edda1910ccb9de6d5aa64ec262a3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000918607200064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jan 18 11:13:31 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-e9a554eab024c32495f90df15e14726eabfb4edda1910ccb9de6d5aa64ec262a3
PageCount 6
ParticipantIDs ieee_primary_9996648
PublicationCentury 2000
PublicationDate 2022-Dec.
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.
PublicationDecade 2020
PublicationTitle 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)
PublicationTitleAbbrev SEC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8905349
Snippet Quantum neural networks are emerging as poten-tial candidates to leverage noisy quantum processing units for applications. Here we introduce hybrid...
SourceID ieee
SourceType Publisher
StartPage 468
SubjectTerms Physical layer
quantum autoencoder
Quantum computing
quantum machine learning
radio communication
Radio transmitters
Receivers
Robustness
Symbols
variational quantum algorithms
Wireless communication
Title Hybrid Quantum-Classical Autoencoders for End-to-End Radio Communication
URI https://ieeexplore.ieee.org/document/9996648
WOSCitedRecordID wos000918607200064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09a8MwED2S0KFTW5LSbzR0rBpblq1oLCEhU0i_IFuQpTNkqF1SO9B_35McEgpdOlnYg-FJ4t1J9-4B3NO6zTNMI445bTdpleSmEJanUgniK6u1a80m1Hw-Wi71ogMPey0MIobiM3z0w3CX7yrb-KOyYQjO5agLXaVUq9XaNRKKIz18nYwp2VE-6ROhC2eQxR8sUwJjTE_-969TGBykd2yxJ5Uz6GDZh9ns2wur2HNDODQfPDhZenTZU1NXvhWlL0dmFH-ySel4XXF6sBfj1hX7pQAZwPt08jae8Z0FAl-LKKk5akN8j4aAlDbxPtGFjlwRpxgTmBl9KHKJzhlKuyJrc-0wc6kxmUQrMmGSc-iVVYkXwEQqMkOMjrGPkZQYFSnlFi6JvfOFtvEl9D0Kq8-2y8VqB8DV36-v4djD3BZ23ECv3jR4C0d2W6-_Nndhan4A7MiRGA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MKehJZRN_m4NH49o0aZejjEnFOaZO2G2kySvsYCuzFfzvTdKxIXjx1NAeCl8SvveS970P4Nqu2yxGEVDM7HbjOuFU5UxTwRNm-UpLaRqziWQ87s9mctKCm7UWBhF98RneuqG_yzelrt1RWc8H57y_BduCcxY2aq1VK6EwkL3X4cCmO4lL-5jvw-mF8RvTFM8Z9_v_-9sBdDfiOzJZ08ohtLDoQJp-O2kVea4tEvU79V6WDl9yV1ela0bpCpKJjUDJsDC0Kql9kBdlFiX5pQHpwtv9cDpI6coEgS5YEFUUpbKMj8pCyXXknKJzGZg8FBhaOGP7Ic84GqNs4hVonUmDsRFKxRw1i5mKjqBdlAUeA2GCxcpyOoYuSkpYPxc2uzBR6LwvpA5PoONQmH80fS7mKwBO_359Bbvp9Gk0Hz2MH89gz0HelHmcQ7ta1ngBO_qrWnwuL_00_QCpf5Rf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+7th+Symposium+on+Edge+Computing+%28SEC%29&rft.atitle=Hybrid+Quantum-Classical+Autoencoders+for+End-to-End+Radio+Communication&rft.au=Tabi%2C+Zsolt&rft.au=Bako%2C+Bence&rft.au=Nagy%2C+Daniel+T.+R.&rft.au=Vaderna%2C+Peter&rft.date=2022-12-01&rft.pub=IEEE&rft.spage=468&rft.epage=473&rft_id=info:doi/10.1109%2FSEC54971.2022.00071&rft.externalDocID=9996648