Cross-Database Evaluation of Pain Recognition from Facial Video

So far, all studies investigating the facial expression of pain have validated methods on the same database, whereas the cross-database performance is less considered. This may be due to poor performance of well-trained models on other databases. In this paper, we propose two distinct methods to cla...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA) s. 181 - 186
Hlavní autoři: Othman, Ehsan, Werner, Philipp, Saxen, Frerk, Al-Hamadi, Ayoub, Walter, Steffen
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.09.2019
Témata:
ISSN:1849-2266
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:So far, all studies investigating the facial expression of pain have validated methods on the same database, whereas the cross-database performance is less considered. This may be due to poor performance of well-trained models on other databases. In this paper, we propose two distinct methods to classify based on the temporal information. To explore the generalization capability of pain recognition models, we do cross-database validations on two benchmark pain databases: BioVid and X-ITE. We also experiment with combining both databases. Experimental results (1) show that our methods can be successfully used to classify pain (both methods perform similarly well), (2) demonstrate that the performance is robust by verifying them cross-database, and (3) present that the performance of pain assessment is improved with more data (combined-database).
ISSN:1849-2266
DOI:10.1109/ISPA.2019.8868562