miTarDigger: A Fusion Deep-learning Approach for Predicting Human miRNA Targets

MicroRNAs (miRNAs) are small non-coding RNAs that achieve post-transcriptional regulation of RNA silencing and gene expression by targeting messenger RNAs (mRNAs). Rapid and effective detection of miRNAs target sites is a significantly important topic in bioinformatics. In this study, a deep learnin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) s. 2891 - 2897
Hlavní autori: Yan, Jianrong, Li, Yanan, Zhu, Min
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 16.12.2020
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:MicroRNAs (miRNAs) are small non-coding RNAs that achieve post-transcriptional regulation of RNA silencing and gene expression by targeting messenger RNAs (mRNAs). Rapid and effective detection of miRNAs target sites is a significantly important topic in bioinformatics. In this study, a deep learning approach based on fusion of stacked denoising autoencoders (SDA) and Convolutional denoising autoencoders (CAE) is developed for sequence and structure data respectively with the help of an existing duplex sequence model. Compared with four conventional machine learning methods, the proposed fusion model performs better in terms of the accuracy, precision, recall, AUC (Area under the curve) and Fl-score. A web system is also developed to identify and display the microRNA target sites effectively and Rapidly.
DOI:10.1109/BIBM49941.2020.9313504