A Recursive Prediction Error Method with Effective Use of Gradient-Functions to Adapt PMSM-Parameters Online

This paper proposes a method for online estimation of electrical parameters of interior permanent magnet synchronous machines (IPMSM) based on the recursive prediction error method (RPEM). The parameter-sensitivity functions (herein known as the gradient functions, Ψ T ) both in dynamic and steady -...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Conference record of the Industry Applications Conference s. 1 - 5
Hlavní autori: Perera, Aravinda, Nilsen, Roy
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 10.10.2020
Predmet:
ISSN:2576-702X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper proposes a method for online estimation of electrical parameters of interior permanent magnet synchronous machines (IPMSM) based on the recursive prediction error method (RPEM). The parameter-sensitivity functions (herein known as the gradient functions, Ψ T ) both in dynamic and steady -states are exploited for this purpose. The RPEM has been computed using the stochastic gradient algorithm (SGA). The scalar Hessian matrix, r[k] appearing in the algorithm has been analyzed for both its steady and dynamic states. Different combinations of Ψ T and r[k] -states have been simulated and compared with respect to performance when used for parameter adaptation.
ISSN:2576-702X
DOI:10.1109/IAS44978.2020.9334744