A Recursive Prediction Error Method with Effective Use of Gradient-Functions to Adapt PMSM-Parameters Online

This paper proposes a method for online estimation of electrical parameters of interior permanent magnet synchronous machines (IPMSM) based on the recursive prediction error method (RPEM). The parameter-sensitivity functions (herein known as the gradient functions, Ψ T ) both in dynamic and steady -...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Conference record of the Industry Applications Conference s. 1 - 5
Hlavní autoři: Perera, Aravinda, Nilsen, Roy
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 10.10.2020
Témata:
ISSN:2576-702X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes a method for online estimation of electrical parameters of interior permanent magnet synchronous machines (IPMSM) based on the recursive prediction error method (RPEM). The parameter-sensitivity functions (herein known as the gradient functions, Ψ T ) both in dynamic and steady -states are exploited for this purpose. The RPEM has been computed using the stochastic gradient algorithm (SGA). The scalar Hessian matrix, r[k] appearing in the algorithm has been analyzed for both its steady and dynamic states. Different combinations of Ψ T and r[k] -states have been simulated and compared with respect to performance when used for parameter adaptation.
ISSN:2576-702X
DOI:10.1109/IAS44978.2020.9334744