Robust Precoding for 3D Massive MIMO with Riemannian Manifold Optimization
This paper investigates robust downlink precoding for three-dimensional (3D) massive multi-input multi-output (MIMO) configuration with matrix manifold optimization. Starting with a posteriori channel model, we formulate the robust precoder design to maximize an upper bound of ergodic weighted sum-r...
Uložené v:
| Vydané v: | IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC s. 1341 - 1346 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
10.04.2022
|
| Predmet: | |
| ISSN: | 1558-2612 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper investigates robust downlink precoding for three-dimensional (3D) massive multi-input multi-output (MIMO) configuration with matrix manifold optimization. Starting with a posteriori channel model, we formulate the robust precoder design to maximize an upper bound of ergodic weighted sum-rate under a total power budget. We derive the generalized eigenvector structure for optimal precoder with matrix manifold optimization. However, since the precoding of multiple users is coupled in the structure, we maximize the objective function for each user in alternation and prove the solution of each individual problem is the generalized eigenvector corresponding to the maximum generalized eigenvalue. In accordance with this, we present an iterative algorithm to design the precoder. Furthermore, we propose a Riemannian conjugate gradient (RCG) method to solve the generalized eigenvalue problem (GEP) for higher efficiency in the precoder design algorithm. |
|---|---|
| ISSN: | 1558-2612 |
| DOI: | 10.1109/WCNC51071.2022.9771720 |