Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks
Deep neural networks are vulnerable to adversarial examples, which can mislead classifiers by adding imperceptible perturbations. An intriguing property of adversarial examples is their good transferability, making black-box attacks feasible in real-world applications. Due to the threat of adversari...
Saved in:
| Published in: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 4307 - 4316 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2019
|
| Subjects: | |
| ISSN: | 1063-6919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!