Gengar: An RDMA-based Distributed Hybrid Memory Pool
Byte-addressable Non-volatile Memory (NVM) technologies promise higher density and lower cost than DRAM. They have been increasingly employed for data center applications. Despite many previous studies on using NVM in a single machine, there remain challenges to best utilize it in a distributed data...
Uložené v:
| Vydané v: | Proceedings of the International Conference on Distributed Computing Systems s. 92 - 103 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.07.2021
|
| Predmet: | |
| ISSN: | 2575-8411 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Byte-addressable Non-volatile Memory (NVM) technologies promise higher density and lower cost than DRAM. They have been increasingly employed for data center applications. Despite many previous studies on using NVM in a single machine, there remain challenges to best utilize it in a distributed data center environment. This paper presents Gengar, an RDMA-enabled Distributed Shared Hybrid Memory (DSHM) pool with simple programming APIs on viewing remote NVM and DRAM in a global memory space. We propose to exploit semantics of RDMA primitives to identify frequently-accessed data in the hybrid memory pool, and cache it in distributed DRAM buffers. We redesign RDMA communication protocols to reduce the bottleneck of RDMA write latency by leveraging a proxy mechanism. Gengar also supports memory sharing among multiple users with data consistency guarantee. We evaluate Gengar in a real testbed equipped with Intel Optane DC Persistent DIMMs. Experimental results show that Gengar significantly improves the performance of public benchmarks such as MapReduce and YCSB by up to 70 % compared with state-of-the-art DSHM systems. |
|---|---|
| ISSN: | 2575-8411 |
| DOI: | 10.1109/ICDCS51616.2021.00018 |