The Border K-Means Clustering Algorithm for One Dimensional Data

Clustering has been widely used for data pre-processing, mining, and analysis. The k-means clustering algorithm is commonly used because of its simplicity and flexibility to work in many real-life applications and services. Despite being commonly used, the k-means algorithm suffers from non-determin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Conference on Big Data and Smart Computing s. 35 - 42
Hlavní autoři: Froese, Ryan, Klassen, James W., Leung, Carson K., Loewen, Tyler S.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.01.2022
Témata:
ISSN:2375-9356
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Clustering has been widely used for data pre-processing, mining, and analysis. The k-means clustering algorithm is commonly used because of its simplicity and flexibility to work in many real-life applications and services. Despite being commonly used, the k-means algorithm suffers from non-deterministic results and run times that greatly vary depending on the initial selection of cluster centroids. To improve the k-means algorithm, we present in this paper a border k-means clustering algorithm. It combines concepts from the k-means algorithm with an additional focus on the concepts of the borders dividing clusters. Consequently, the resulting border k-means algorithm leads to deterministic results and a great reduction in run time when compared with the traditional k-means algorithm.
ISSN:2375-9356
DOI:10.1109/BigComp54360.2022.00017