Gaussian Data Privacy Under Linear Function Recoverability

A user's data is represented by a Gaussian random variable. Given a linear function of the data, a querier is required to recover, with at least a prescribed accuracy level, the function value based on a query response provided by the user. The user devises the query response, subject to the re...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings / IEEE International Symposium on Information Theory pp. 632 - 636
Main Author: Nageswaran, Ajaykrishnan
Format: Conference Proceeding
Language:English
Published: IEEE 26.06.2022
Subjects:
ISSN:2157-8117
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A user's data is represented by a Gaussian random variable. Given a linear function of the data, a querier is required to recover, with at least a prescribed accuracy level, the function value based on a query response provided by the user. The user devises the query response, subject to the recoverability requirement, so as to maximize privacy of the data from the querier. Recoverability and privacy are both measured by ℓ 2 -distance criteria. An exact characterization is provided of maximum user data privacy under the recoverability condition. An explicit achievability scheme for the user is given and its privacy compared with a converse upper bound.
AbstractList A user's data is represented by a Gaussian random variable. Given a linear function of the data, a querier is required to recover, with at least a prescribed accuracy level, the function value based on a query response provided by the user. The user devises the query response, subject to the recoverability requirement, so as to maximize privacy of the data from the querier. Recoverability and privacy are both measured by ℓ 2 -distance criteria. An exact characterization is provided of maximum user data privacy under the recoverability condition. An explicit achievability scheme for the user is given and its privacy compared with a converse upper bound.
Author Nageswaran, Ajaykrishnan
Author_xml – sequence: 1
  givenname: Ajaykrishnan
  surname: Nageswaran
  fullname: Nageswaran, Ajaykrishnan
  email: ajayk@umd.edu
  organization: University of Maryland,Department of Electrical and Computer Engineering and the Institute for Systems Research,College Park,MD,USA,20742
BookMark eNotj8FKw0AURUdRsKl-gSDzA4lvZvImiTuptgYCirbr8pK8wEidyCQt5O8N2NVZ3cM9kbjyvWchHhQkSkHxWH6VWwS0NtGgdVLkJkWNFyJS1mKqFRb6UixmZnGuVHYjomH4BjCZAb0QTxs6DoMjL19oJPkR3ImaSe58y0FWzjMFuT76ZnS9l5_c9CcOVLuDG6dbcd3RYeC7M5dit37drt7i6n1Trp6r2GkwY9wgKTRQFxlxOz_MNSB0bAmy1lCeIzUdNtwptmwLxpRrhFYhazbzoDVLcf_vdcy8_w3uh8K0P3eaPx-TSf0
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ISIT50566.2022.9834525
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1665421592
9781665421591
EISSN 2157-8117
EndPage 636
ExternalDocumentID 9834525
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-c5a1530b97aed02282050fe6a07d3a885acf5cef1e6e69e54eb50d15e2e3ed0d3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001254261900107&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:24:25 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-c5a1530b97aed02282050fe6a07d3a885acf5cef1e6e69e54eb50d15e2e3ed0d3
PageCount 5
ParticipantIDs ieee_primary_9834525
PublicationCentury 2000
PublicationDate 2022-June-26
PublicationDateYYYYMMDD 2022-06-26
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June-26
  day: 26
PublicationDecade 2020
PublicationTitle Proceedings / IEEE International Symposium on Information Theory
PublicationTitleAbbrev ISIT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0037302
Score 1.798668
Snippet A user's data is represented by a Gaussian random variable. Given a linear function of the data, a querier is required to recover, with at least a prescribed...
SourceID ieee
SourceType Publisher
StartPage 632
SubjectTerms Data privacy
Gaussian data privacy
Information theory
linear function computation
Privacy
query response
Random variables
recoverability
Upper bound
Title Gaussian Data Privacy Under Linear Function Recoverability
URI https://ieeexplore.ieee.org/document/9834525
WOSCitedRecordID wos001254261900107&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NawIxEB1UeujJtlr6TQ49djWbNdndXtvaCkWEWvAms8kseNGiq-C_b2ZdLYVeeguBITCZzGSSefMA7k3mQgylC6xGCno6pCCzTAmoc4mYalSu7K7_Hg-HyWSSjmrwcMDCEFFZfEYdHpZ_-W5h1_xU1k2TiL_h6lCPY7PDau29buQtVVUI4FCm3cHHYMzBnasQlOpUkr8oVMoI0m_-b-0TaP9A8cToEGROoUbzM2juuRhEdTRb8PiK6xUDIsUzFuhFZhu0W1HSGgmfcHqDFn0fw3gfBOec3oR3Lbq3bfjsv4yf3oKKFyGYKRkVrFbvp2SWxkiO-9coqWVOBmXsIkwSjTbXlvKQDJmUdI8yLV2oSVHkBVx0Do35Yk4XIKxMI-eTRJMgX83ixF_gqGcyxND2dCwvocWqmH7tWl9MKy1c_T19Dcesba6kUuYGGsVyTbdwZDfFbLW8K_frG-bjlu0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmugJFYxve_DoQrfd7sOrihCRkIgJNzLbziZcwMBCwr-3XRaMiRdvTZNJk-l0ptPONx_AfZgaH31uPK2QvED55KXaUQKqjCMmCoUpuuv3on4_Ho2SQQUedlgYIiqKz6jphsVfvpnppXsqayWxdN9we7CvgkDwDVpr63eltVVRYoB9nrS6H92hC--uDkGIZin7i0SliCHt2v9WP4bGDxiPDXZh5gQqND2F2paNgZWHsw6Pr7hcOEgke8YcrchkhXrNCmIjZlNOa9KsbaOY2wnmsk5rxJsm3esGfLZfhk8dr2RG8CaCy9wp1noqniYRknEdbARXPKMQeWQkxrFCnSlNmU8hhQmpgFLFja9IkLQCRp5BdTqb0jkwzRNpbJoYxuguZ1Fsr3AUhCmirwMV8QuoO1WMvzbNL8alFi7_nr6Dw87wvTfudftvV3DkNO_qqkR4DdV8vqQbONCrfLKY3xZ79w3yZ5o0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Symposium+on+Information+Theory&rft.atitle=Gaussian+Data+Privacy+Under+Linear+Function+Recoverability&rft.au=Nageswaran%2C+Ajaykrishnan&rft.date=2022-06-26&rft.pub=IEEE&rft.eissn=2157-8117&rft.spage=632&rft.epage=636&rft_id=info:doi/10.1109%2FISIT50566.2022.9834525&rft.externalDocID=9834525