Gaussian Data Privacy Under Linear Function Recoverability

A user's data is represented by a Gaussian random variable. Given a linear function of the data, a querier is required to recover, with at least a prescribed accuracy level, the function value based on a query response provided by the user. The user devises the query response, subject to the re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings / IEEE International Symposium on Information Theory S. 632 - 636
1. Verfasser: Nageswaran, Ajaykrishnan
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 26.06.2022
Schlagworte:
ISSN:2157-8117
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A user's data is represented by a Gaussian random variable. Given a linear function of the data, a querier is required to recover, with at least a prescribed accuracy level, the function value based on a query response provided by the user. The user devises the query response, subject to the recoverability requirement, so as to maximize privacy of the data from the querier. Recoverability and privacy are both measured by ℓ 2 -distance criteria. An exact characterization is provided of maximum user data privacy under the recoverability condition. An explicit achievability scheme for the user is given and its privacy compared with a converse upper bound.
ISSN:2157-8117
DOI:10.1109/ISIT50566.2022.9834525