Generalized Zero-Shot Learning Using Conditional Wasserstein Autoencoder
Generalized zero-shot learning (GZSL) is a technique to train a deep learning model to identify unseen classes. Conventionally, conditional generative models have been employed to generate training data for unseen classes from the attribute. In this paper, we propose a new conditional generative mod...
Saved in:
| Published in: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 3413 - 3417 |
|---|---|
| Main Authors: | , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
23.05.2022
|
| Subjects: | |
| ISSN: | 2379-190X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Generalized zero-shot learning (GZSL) is a technique to train a deep learning model to identify unseen classes. Conventionally, conditional generative models have been employed to generate training data for unseen classes from the attribute. In this paper, we propose a new conditional generative model that improves the GZSL performance greatly. In a nutshell, the proposed model, called conditional Wasserstein autoencoder (CWAE), minimizes the Wasserstein distance between the real and generated image feature distributions using an encoder-decoder architecture. From the extensive experiments on various benchmark datasets, we show that the proposed CWAE outperforms conventional generative models in terms of the GZSL classification performance. |
|---|---|
| AbstractList | Generalized zero-shot learning (GZSL) is a technique to train a deep learning model to identify unseen classes. Conventionally, conditional generative models have been employed to generate training data for unseen classes from the attribute. In this paper, we propose a new conditional generative model that improves the GZSL performance greatly. In a nutshell, the proposed model, called conditional Wasserstein autoencoder (CWAE), minimizes the Wasserstein distance between the real and generated image feature distributions using an encoder-decoder architecture. From the extensive experiments on various benchmark datasets, we show that the proposed CWAE outperforms conventional generative models in terms of the GZSL classification performance. |
| Author | Kim, Junhan Shim, Byonghyo |
| Author_xml | – sequence: 1 givenname: Junhan surname: Kim fullname: Kim, Junhan email: junhankim@islab.snu.ac.kr organization: Seoul National University,Department of Electrical and Computer Engineering,Seoul,Korea – sequence: 2 givenname: Byonghyo surname: Shim fullname: Shim, Byonghyo email: bshim@islab.snu.ac.kr organization: Seoul National University,Department of Electrical and Computer Engineering,Seoul,Korea |
| BookMark | eNotj81KAzEUhaMo2FafwM28wNTcJM3PsgzaCgMKtShuSprcaKQmkowLffpWLBy-s_s4Z0zOUk5ISAN0CkDNzX03X60eBTeMTRk9wCihlIATMgYpZ4IeIk_JiHFlWjD05YKMa_2glGol9IgsF5iw2F38Rd-8Ysnt6j0PTY-2pJjemnX9Y5eTj0PMye6aZ1srljpgTM38e8iYXPZYLsl5sLuKV8eekPXd7VO3bPuHxWFk30ZG-dA6IagSIcyCRx-01Nst41ZxbZUMTrGgrRYOuEU0EMB4lF4aJ7cACsAhn5Drf29ExM1XiZ-2_GyOr_keNYVQiQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICASSP43922.2022.9747741 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1665405406 9781665405409 |
| EISSN | 2379-190X |
| EndPage | 3417 |
| ExternalDocumentID | 9747741 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research Foundation funderid: 10.13039/501100001321 – fundername: Samsung funderid: 10.13039/100004358 |
| GroupedDBID | 23M 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i203t-c44074ff5fdedf868bb23a738a76fc72f8a84c13aee91f19de6d69c6b11711ce3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864187903140&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:25:03 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-c44074ff5fdedf868bb23a738a76fc72f8a84c13aee91f19de6d69c6b11711ce3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9747741 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-May-23 |
| PublicationDateYYYYMMDD | 2022-05-23 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-May-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) |
| PublicationTitleAbbrev | ICASSP |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0008748 |
| Score | 2.204535 |
| Snippet | Generalized zero-shot learning (GZSL) is a technique to train a deep learning model to identify unseen classes. Conventionally, conditional generative models... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3413 |
| SubjectTerms | Acoustics Benchmark testing Conferences Data models Deep learning Generalized zero-shot learning generative adversarial network generative model Signal processing Training data variational autoencoder |
| Title | Generalized Zero-Shot Learning Using Conditional Wasserstein Autoencoder |
| URI | https://ieeexplore.ieee.org/document/9747741 |
| WOSCitedRecordID | wos000864187903140&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61eNCLj1Z8k4NHYzfJNskeS7HUSylUsXgp2WSie-nKuvXgrzdJ16rgxUsIgSQwA5lH5vsGoSvXZ5opkxLBKSep5I5kmmuS28QkDJij1MZmE3IyUfN5Nm2h6w0WBgBi8RnchGn8y7elWYVUWS_4vjKg1LekFGus1ubVVTJVX5U6Sda7Gw5ms6m3tiygrfzQ7P3VRCXakNHe_27fR91vMB6ebszMAWrB8hDt_uAR7KBxQx5dfIDFT1CVZPZS1rjhTn3GsS4A-_NssU794UcdYZah1SUerOoy0FlaqLroYXR7PxyTpkUCKVjCa2JSH5ClzvWdBeuUUHnOuJZcaRlAPMwprVJDuQbIqKOZBWFFZkROqaTUAD9C7WW5hGOEvd9mVBopsHyQxUF5u2WEc15_0geR6gR1gkwWr2sWjEUjjtO_l8_QThB7-Gdn_By162oFF2jbvNfFW3UZVfcJoWOamA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA6lCurFpRV35-DR2MnSmcyxFEuLtRRasXgpmeRF59KRcerBX2-SjlXBi5cQAkkgD_LW73sIXZk2lVQojiNGGOYxMziRTOJUhyqkQA0h2jebiEcjMZsl4xq6XmNhAMAXn8GNm_pcvs7V0oXKWs72jR1KfaPNOQ1XaK31vytiLr5qdcKkNeh2JpOx1bfU4a3sUO3-1UbFa5He7v_u30PNbzheMF4rmn1Ug8UB2vnBJNhA_Yo-OvsAHTxBkePJS14GFXvqc-ArAwJ7ns5Wwb_gUXqgpWt2GXSWZe4ILTUUTfTQu512-7hqkoAzGrISK25dMm5M22jQRkQiTSmTMRMydjAeaoQUXBEmARJiSKIh0lGiopSQmBAF7BDVF_kCjlBgLTcluCfBsm4WA2E1l4qMsRKMrRspjlHDvcn8dcWDMa-e4-Tv5Uu01Z_eD-fDwejuFG07EbisO2VnqF4WSzhHm-q9zN6KCy_GT9vqnd8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Generalized+Zero-Shot+Learning+Using+Conditional+Wasserstein+Autoencoder&rft.au=Kim%2C+Junhan&rft.au=Shim%2C+Byonghyo&rft.date=2022-05-23&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=3413&rft.epage=3417&rft_id=info:doi/10.1109%2FICASSP43922.2022.9747741&rft.externalDocID=9747741 |