Generalized Zero-Shot Learning Using Conditional Wasserstein Autoencoder
Generalized zero-shot learning (GZSL) is a technique to train a deep learning model to identify unseen classes. Conventionally, conditional generative models have been employed to generate training data for unseen classes from the attribute. In this paper, we propose a new conditional generative mod...
Uloženo v:
| Vydáno v: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 3413 - 3417 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
23.05.2022
|
| Témata: | |
| ISSN: | 2379-190X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Generalized zero-shot learning (GZSL) is a technique to train a deep learning model to identify unseen classes. Conventionally, conditional generative models have been employed to generate training data for unseen classes from the attribute. In this paper, we propose a new conditional generative model that improves the GZSL performance greatly. In a nutshell, the proposed model, called conditional Wasserstein autoencoder (CWAE), minimizes the Wasserstein distance between the real and generated image feature distributions using an encoder-decoder architecture. From the extensive experiments on various benchmark datasets, we show that the proposed CWAE outperforms conventional generative models in terms of the GZSL classification performance. |
|---|---|
| ISSN: | 2379-190X |
| DOI: | 10.1109/ICASSP43922.2022.9747741 |