Distributed Image Transmission Using Deep Joint Source-Channel Coding

We study the problem of deep joint source-channel coding (D-JSCC) for correlated image sources, where each source is transmitted through a noisy independent channel to the common receiver. In particular, we consider a pair of images captured by two cameras with probably overlapping fields of view tr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 5208 - 5212
Hlavní autori: Wang, Sixian, Yang, Ke, Dai, Jincheng, Niu, Kai
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 23.05.2022
Predmet:
ISSN:2379-190X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We study the problem of deep joint source-channel coding (D-JSCC) for correlated image sources, where each source is transmitted through a noisy independent channel to the common receiver. In particular, we consider a pair of images captured by two cameras with probably overlapping fields of view transmitted over wireless channels and reconstructed in the center node. The challenging problem involves designing a practical code to utilize both source and channel correlations to improve transmission efficiency without additional transmission overhead. To tackle this, we need to consider the common information across two stereo images as well as the differences between two transmission channels. In this case, we propose a deep neural networks solution that includes lightweight edge encoders and a powerful center decoder. Besides, in the decoder, we propose a novel channel state information aware cross attention module to highlight the overlapping fields and leverage the relevance between two noisy feature maps. Our results show the impressive improvement of reconstruction quality in both links by exploiting the noisy representations of the other link. Moreover, the proposed scheme shows competitive results compared to the separated schemes with capacity-achieving channel codes.
AbstractList We study the problem of deep joint source-channel coding (D-JSCC) for correlated image sources, where each source is transmitted through a noisy independent channel to the common receiver. In particular, we consider a pair of images captured by two cameras with probably overlapping fields of view transmitted over wireless channels and reconstructed in the center node. The challenging problem involves designing a practical code to utilize both source and channel correlations to improve transmission efficiency without additional transmission overhead. To tackle this, we need to consider the common information across two stereo images as well as the differences between two transmission channels. In this case, we propose a deep neural networks solution that includes lightweight edge encoders and a powerful center decoder. Besides, in the decoder, we propose a novel channel state information aware cross attention module to highlight the overlapping fields and leverage the relevance between two noisy feature maps. Our results show the impressive improvement of reconstruction quality in both links by exploiting the noisy representations of the other link. Moreover, the proposed scheme shows competitive results compared to the separated schemes with capacity-achieving channel codes.
Author Wang, Sixian
Niu, Kai
Dai, Jincheng
Yang, Ke
Author_xml – sequence: 1
  givenname: Sixian
  surname: Wang
  fullname: Wang, Sixian
  organization: Beijing University of Posts and Telecommunications,Beijing,China,100876
– sequence: 2
  givenname: Ke
  surname: Yang
  fullname: Yang, Ke
  organization: Beijing University of Posts and Telecommunications,Beijing,China,100876
– sequence: 3
  givenname: Jincheng
  surname: Dai
  fullname: Dai, Jincheng
  organization: Beijing University of Posts and Telecommunications,Beijing,China,100876
– sequence: 4
  givenname: Kai
  surname: Niu
  fullname: Niu, Kai
  organization: Beijing University of Posts and Telecommunications,Beijing,China,100876
BookMark eNotj99KwzAYxaMouE6fwJu8QOeXP02aS-mmTgYK3cC7kbRfZmRNR9Nd-PYWHBzOuflxOCcjN7GPSAhlsGAMzNO6eq7rTykM5wsOkxktFVflFcmYUoWESeqazLjQJmcGvu5IltIPAJRaljOyWoY0DsGdR2zpurMHpNvBxtSFlEIf6S6FeKBLxBN970Mcad2fhwbz6tvGiEda9e0E3JNbb48JHy45J7uX1bZ6yzcfr9PCTR44iDF3rddgobHeMSetkVr5wrWilI6B99AyqVELIcEq0yC6RpSFl9gKzrhoUMzJ439vQMT9aQidHX73l8viD801TsU
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP43922.2022.9746268
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665405406
9781665405409
EISSN 2379-190X
EndPage 5212
ExternalDocumentID 9746268
Genre orig-research
GrantInformation_xml – fundername: Beijing Municipal Natural Science Foundation
  funderid: 10.13039/501100005089
– fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-bdf70a0cafb1b4a9476f5bd384b10ff0d147e73340a69ceebc385f4ed32123ce3
IEDL.DBID RIE
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864187905100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:25:04 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-bdf70a0cafb1b4a9476f5bd384b10ff0d147e73340a69ceebc385f4ed32123ce3
PageCount 5
ParticipantIDs ieee_primary_9746268
PublicationCentury 2000
PublicationDate 2022-May-23
PublicationDateYYYYMMDD 2022-05-23
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-23
  day: 23
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.3270063
Snippet We study the problem of deep joint source-channel coding (D-JSCC) for correlated image sources, where each source is transmitted through a noisy independent...
SourceID ieee
SourceType Publisher
StartPage 5208
SubjectTerms Codes
Decoding
deep neural networks
Distributed joint source-channel coding
Image coding
Image communication
Noise measurement
Speech processing
Wireless communication
wireless image transmission
Title Distributed Image Transmission Using Deep Joint Source-Channel Coding
URI https://ieeexplore.ieee.org/document/9746268
WOSCitedRecordID wos000864187905100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEvPlrxTQ4eXbu7SZrsUfrAipRCFXorm2QCBd0t7dbfb5LWquDFSwiBPJiBfJPJfDMAt2lic27dM9UgonugqCRSTJtIcWaV7kiuN0lcn8VoJKfTbFyDux0Xxk0JwWd477vhL9-Ueu1dZW1n-zr7W9ahLoTYcLV2t64UTH5F6sRZe9h9mEzGDm1Tz7ZyzXburyIqAUMGh__b_Qha32Q8Mt7BzDHUsDiBgx95BJvQ7_n0t75yFRoyfHdXBAkY5HTonWEkxAWQHuKCPJXzoiKT4LKPPLWgwDfSLf3SLXgd9F-6j9G2PkI0T2NaRcpYEeexzq1KFMszJjqWK0MlU0lsbWwSJlBQyuK8k7lTKk0ltwwN9XilkZ5CoygLPAOiudVC5c68cAYW50ZiklmWWm7QpsLYc2h6gcwWmxQYs60sLv4evoR9L3P_yZ7SK2hUyzVew57-qOar5U3Q2ydLrJs0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFdSLj1Z8m4NH1-5ukiZ7lD5otZZCK_RWNskECrpbauvvN9nWquDFSwiBPJiBfJPJfDMAt3FkU27dM9UgonugqChQTJtAcWaVrkuuV0lce6Lfl-NxMijB3YYL46YUwWd477vFX77J9dK7ymrO9nX2t9yCbc5YHK3YWpt7Vwomv2J1wqTWbTwMhwOHt7HnW7lmPftXGZUCRdoH_9v_EKrfdDwy2ADNEZQwO4b9H5kEK9Bq-gS4vnYVGtJ9c5cEKVDIadG7w0gRGUCaiDPymE-zBRkWTvvAkwsyfCWN3C9dhZd2a9ToBOsKCcE0DukiUMaKMA11alWkWJowUbdcGSqZikJrQxMxgYJSFqb1xJ1SaSq5ZWioRyyN9ATKWZ7hKRDNrRYqdQaGM7E4NxKjxLLYcoM2FsaeQcULZDJbJcGYrGVx_vfwDex2Rs-9Sa_bf7qAPS9__-Ue00soL-ZLvIId_bGYvs-vCx1-Ao38nns
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Distributed+Image+Transmission+Using+Deep+Joint+Source-Channel+Coding&rft.au=Wang%2C+Sixian&rft.au=Yang%2C+Ke&rft.au=Dai%2C+Jincheng&rft.au=Niu%2C+Kai&rft.date=2022-05-23&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=5208&rft.epage=5212&rft_id=info:doi/10.1109%2FICASSP43922.2022.9746268&rft.externalDocID=9746268