Using Quantum Computers to Study Random Close Packing of Granular Discs
We reformulate the problem of granular random close packing of 2D discs as a Quadratic Unconstrained Binary Optimization in order to utilize the D-Wave 2000Q quantum annealing computer. The solution is a set of ground states corresponding to jammed configurations in which no single particle can be m...
Saved in:
| Published in: | 2019 Tenth International Green and Sustainable Computing Conference (IGSC) pp. 1 - 6 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.10.2019
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We reformulate the problem of granular random close packing of 2D discs as a Quadratic Unconstrained Binary Optimization in order to utilize the D-Wave 2000Q quantum annealing computer. The solution is a set of ground states corresponding to jammed configurations in which no single particle can be moved without creating a non-zero potential. The problem is adapted to the quantum computer by discretizing space and mapping each point onto physical quantum-bits (qubits). An objective function is derived that defines the system energy for arbitrary particle locations, subject to constraints biasing solutions toward a pre-determined number of particles. Uniquely, the quantum computer samples and returns minimum values of this function finding low energy states, a subset of which are physically realizable solutions we seek. While quantum computing's technological infancy restricts our study to proofof-concept, our work still shows promise for efficient analysis of complex granular problems. |
|---|---|
| DOI: | 10.1109/IGSC48788.2019.8957200 |