Streaming Facility Location in High Dimension via Geometric Hashing

In Euclidean Uniform Facility Location, the input is a set of clients in \mathrm{R}^{d} and the goal is to place facilities to serve them, so as to minimize the total cost of opening facilities plus connecting the clients. We study the classical setting of dynamic geometric streams, where the client...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings / annual Symposium on Foundations of Computer Science s. 450 - 461
Hlavní autori: Czumaj, Artur, Jiang, Shaofeng H.-C., Krauthgamer, Robert, Vesely, Pavel, Yang, Mingwei
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.10.2022
Predmet:
ISSN:2575-8454
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In Euclidean Uniform Facility Location, the input is a set of clients in \mathrm{R}^{d} and the goal is to place facilities to serve them, so as to minimize the total cost of opening facilities plus connecting the clients. We study the classical setting of dynamic geometric streams, where the clients are presented as a sequence of insertions and deletions of points in the grid \{1,ldots\,\Delta \}^{d}, and we focus on the high-dimensional regime, where the algorithm's space complexity must be polynomial (and certainly not exponential) in d \cdot \log \Delta.We present a new algorithmic framework, based on importance sampling from the stream, for O(1)-approximation of the optimal cost using only poly (d\cdot\log\Delta) space. This framework is easy to implement in two passes, one for sampling points and the other for estimating their contribution. Over random-order streams, we can extend this to a one-pass algorithm by using the two halves of the stream separately. Our main result, for arbitrary-order streams, computes O(d^{1.5})-approximation in one pass by using the new framework but combining the two passes differently. This improves upon previous algorithms that either need space exponential in d or only guarantee O(d\cdot\log^{2}\Delta)-approximation, and therefore our algorithms for high-dimensional streams are the first to avoid the O(\log\Delta) factor in approximation that is inherent to the widely-used quadtree decomposition. Our improvement is achieved by employing a geometric hashing scheme that maps points in \mathbb{R}^{d} into buckets of bounded diameter, with the key property that every point set of small-enough diameter is hashed into at most poly (d) distinct buckets.Finally, we complement our results with a proof that every streaming 1.085-approximation algorithm requires space exponential in poly (d \cdot log \Delta), even for insertion-only streams.
AbstractList In Euclidean Uniform Facility Location, the input is a set of clients in \mathrm{R}^{d} and the goal is to place facilities to serve them, so as to minimize the total cost of opening facilities plus connecting the clients. We study the classical setting of dynamic geometric streams, where the clients are presented as a sequence of insertions and deletions of points in the grid \{1,ldots\,\Delta \}^{d}, and we focus on the high-dimensional regime, where the algorithm's space complexity must be polynomial (and certainly not exponential) in d \cdot \log \Delta.We present a new algorithmic framework, based on importance sampling from the stream, for O(1)-approximation of the optimal cost using only poly (d\cdot\log\Delta) space. This framework is easy to implement in two passes, one for sampling points and the other for estimating their contribution. Over random-order streams, we can extend this to a one-pass algorithm by using the two halves of the stream separately. Our main result, for arbitrary-order streams, computes O(d^{1.5})-approximation in one pass by using the new framework but combining the two passes differently. This improves upon previous algorithms that either need space exponential in d or only guarantee O(d\cdot\log^{2}\Delta)-approximation, and therefore our algorithms for high-dimensional streams are the first to avoid the O(\log\Delta) factor in approximation that is inherent to the widely-used quadtree decomposition. Our improvement is achieved by employing a geometric hashing scheme that maps points in \mathbb{R}^{d} into buckets of bounded diameter, with the key property that every point set of small-enough diameter is hashed into at most poly (d) distinct buckets.Finally, we complement our results with a proof that every streaming 1.085-approximation algorithm requires space exponential in poly (d \cdot log \Delta), even for insertion-only streams.
Author Yang, Mingwei
Czumaj, Artur
Jiang, Shaofeng H.-C.
Krauthgamer, Robert
Vesely, Pavel
Author_xml – sequence: 1
  givenname: Artur
  surname: Czumaj
  fullname: Czumaj, Artur
  email: A.Czumaj@warwick.ac.uk
  organization: University of Warwick
– sequence: 2
  givenname: Shaofeng H.-C.
  surname: Jiang
  fullname: Jiang, Shaofeng H.-C.
  email: shaofeng.jiang@pku.edu.cn
  organization: Peking University
– sequence: 3
  givenname: Robert
  surname: Krauthgamer
  fullname: Krauthgamer, Robert
  email: robert.krauthgamer@weizmann.ac.il
  organization: Weizmann Institute of Science
– sequence: 4
  givenname: Pavel
  surname: Vesely
  fullname: Vesely, Pavel
  email: vesely@iuuk.mff.cuni.cz
  organization: Charles University
– sequence: 5
  givenname: Mingwei
  surname: Yang
  fullname: Yang, Mingwei
  email: yangmingwei@pku.edu.cn
  organization: Peking University
BookMark eNotzN9KwzAYBfAoCq7TJ9CLvEBr_n1JcynVrkJhF9PrkTZft8iaSluEvb2VeXXgcH4nITdxiEjIE2cZ58w-l9tiB0qByQQTImOMAbsiCdcaFAC3cE1WAgykuQJ1R5Jp-mJMLSO1IsVuHtH1IR5o6dpwCvOZ1kPr5jBEGiKtwuFIX0OPcfprfoKjGxx6nMfQ0spNx0Xek9vOnSZ8-M81-SzfPooqrbeb9-KlToNgck4bxY3yVqFVreeNbrQxmOcSEa3MJdfWag9cOe874wRK24BvUGjO805YJ9fk8fIbFrL_HkPvxvPeLsyClr91_kwJ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FOCS54457.2022.00050
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 1665455195
9781665455190
EISSN 2575-8454
EndPage 461
ExternalDocumentID 9996956
Genre orig-research
GroupedDBID --Z
29O
6IE
6IH
6IK
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i203t-b4174d94e94cd1b6b677e883eee938316996d514addf7a2e39b5dbe26118f29a3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000909382900042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:27:40 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-b4174d94e94cd1b6b677e883eee938316996d514addf7a2e39b5dbe26118f29a3
PageCount 12
ParticipantIDs ieee_primary_9996956
PublicationCentury 2000
PublicationDate 2022-Oct.
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.
PublicationDecade 2020
PublicationTitle Proceedings / annual Symposium on Foundations of Computer Science
PublicationTitleAbbrev FOCS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0040504
Score 2.339162
Snippet In Euclidean Uniform Facility Location, the input is a set of clients in \mathrm{R}^{d} and the goal is to place facilities to serve them, so as to minimize...
SourceID ieee
SourceType Publisher
StartPage 450
SubjectTerms Approximation algorithms
Complexity theory
Computer science
Costs
facility location
hash functions
Heuristic algorithms
high dimension
Monte Carlo methods
streaming algorithms
sublinear algorithms
Title Streaming Facility Location in High Dimension via Geometric Hashing
URI https://ieeexplore.ieee.org/document/9996956
WOSCitedRecordID wos000909382900042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQMshbaItzwwYpqHE8dzIXSAUgmQulWJfZEyNEF9Sfx7fElaGFjYrEhW5LPs--58330AtwGiK1FqrlEqLqwP5VEoJFdOog3lPdzMVGITcjKJZjM1bcHdnguDiFXxGd7TsHrLN6XeUKpsSODc4vk2tKWUNVdrd-ta3OGIhhrnOmoYv47eqM-MtCGgV_XkJGb9LwGVyn_E3f_9-RgGP0Q8Nt27mBNoYdGD7k6JgTUHswdHL_vuq6s-jOipOVnYGSxONBW_frHnss7NsbxgVNvBHqitP6XK2DZP2BOWC9LW0mxcqysN4CN-fB-NeSOWwHPP8dc8FTa2MEqgEtbIaZiGUmIU-XYpykahbmhXYCw6svdZJhMPfZUGJkUbQLlR5qnEP4VOURZ4Bixw_CwQJk0x1MJBAgmJ9pSRkuAe4jn0yULzz7ofxrwxzsXfny_hkLagLoC7gs56ucFrONDbdb5a3lSb-A2NmZ2x
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VggQshRbEGw-MhObhxPFcCEW0pRJF6lYl9kXK0Ab1JfHv8SVpYWBhsyJZkc-y77vzffcB3PmIjkChLIVCWtz4UCsMuLCkHStNeQ8n1YXYhBgMwvFYDmtwv-XCIGJRfIYPNCze8nWuVpQqaxM4N3h-B3Z9zl2nZGtt7l2DPGxekeMcW7ajt847dZoRJgh0i66cxK3_JaFSeJCo8b9_H8HJDxWPDbdO5hhqOGtCY6PFwKqj2YTD_rb_6qIFHXpsjqdmBotiReWvX6yXl9k5ls0YVXewR2rsT8kyts5i9oz5lNS1FOuW-kon8BE9jTpdq5JLsDLX9pZWwk10oSVHyY2ZkyAJhMAw9MxSpIlDncCsQBt8ZG60VMQuejLxdYImhHLC1JWxdwr1WT7DM2C-7aU-10mCgeI2EkyIlSu1EAT4EM-hRRaafJYdMSaVcS7-_nwL-91RvzfpvQxeL-GAtqMsh7uC-nK-wmvYU-tltpjfFBv6DfFKoPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+annual+Symposium+on+Foundations+of+Computer+Science&rft.atitle=Streaming+Facility+Location+in+High+Dimension+via+Geometric+Hashing&rft.au=Czumaj%2C+Artur&rft.au=Jiang%2C+Shaofeng+H.-C.&rft.au=Krauthgamer%2C+Robert&rft.au=Vesely%2C+Pavel&rft.date=2022-10-01&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=450&rft.epage=461&rft_id=info:doi/10.1109%2FFOCS54457.2022.00050&rft.externalDocID=9996956