Streaming Facility Location in High Dimension via Geometric Hashing
In Euclidean Uniform Facility Location, the input is a set of clients in \mathrm{R}^{d} and the goal is to place facilities to serve them, so as to minimize the total cost of opening facilities plus connecting the clients. We study the classical setting of dynamic geometric streams, where the client...
Uložené v:
| Vydané v: | Proceedings / annual Symposium on Foundations of Computer Science s. 450 - 461 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.10.2022
|
| Predmet: | |
| ISSN: | 2575-8454 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In Euclidean Uniform Facility Location, the input is a set of clients in \mathrm{R}^{d} and the goal is to place facilities to serve them, so as to minimize the total cost of opening facilities plus connecting the clients. We study the classical setting of dynamic geometric streams, where the clients are presented as a sequence of insertions and deletions of points in the grid \{1,ldots\,\Delta \}^{d}, and we focus on the high-dimensional regime, where the algorithm's space complexity must be polynomial (and certainly not exponential) in d \cdot \log \Delta.We present a new algorithmic framework, based on importance sampling from the stream, for O(1)-approximation of the optimal cost using only poly (d\cdot\log\Delta) space. This framework is easy to implement in two passes, one for sampling points and the other for estimating their contribution. Over random-order streams, we can extend this to a one-pass algorithm by using the two halves of the stream separately. Our main result, for arbitrary-order streams, computes O(d^{1.5})-approximation in one pass by using the new framework but combining the two passes differently. This improves upon previous algorithms that either need space exponential in d or only guarantee O(d\cdot\log^{2}\Delta)-approximation, and therefore our algorithms for high-dimensional streams are the first to avoid the O(\log\Delta) factor in approximation that is inherent to the widely-used quadtree decomposition. Our improvement is achieved by employing a geometric hashing scheme that maps points in \mathbb{R}^{d} into buckets of bounded diameter, with the key property that every point set of small-enough diameter is hashed into at most poly (d) distinct buckets.Finally, we complement our results with a proof that every streaming 1.085-approximation algorithm requires space exponential in poly (d \cdot log \Delta), even for insertion-only streams. |
|---|---|
| AbstractList | In Euclidean Uniform Facility Location, the input is a set of clients in \mathrm{R}^{d} and the goal is to place facilities to serve them, so as to minimize the total cost of opening facilities plus connecting the clients. We study the classical setting of dynamic geometric streams, where the clients are presented as a sequence of insertions and deletions of points in the grid \{1,ldots\,\Delta \}^{d}, and we focus on the high-dimensional regime, where the algorithm's space complexity must be polynomial (and certainly not exponential) in d \cdot \log \Delta.We present a new algorithmic framework, based on importance sampling from the stream, for O(1)-approximation of the optimal cost using only poly (d\cdot\log\Delta) space. This framework is easy to implement in two passes, one for sampling points and the other for estimating their contribution. Over random-order streams, we can extend this to a one-pass algorithm by using the two halves of the stream separately. Our main result, for arbitrary-order streams, computes O(d^{1.5})-approximation in one pass by using the new framework but combining the two passes differently. This improves upon previous algorithms that either need space exponential in d or only guarantee O(d\cdot\log^{2}\Delta)-approximation, and therefore our algorithms for high-dimensional streams are the first to avoid the O(\log\Delta) factor in approximation that is inherent to the widely-used quadtree decomposition. Our improvement is achieved by employing a geometric hashing scheme that maps points in \mathbb{R}^{d} into buckets of bounded diameter, with the key property that every point set of small-enough diameter is hashed into at most poly (d) distinct buckets.Finally, we complement our results with a proof that every streaming 1.085-approximation algorithm requires space exponential in poly (d \cdot log \Delta), even for insertion-only streams. |
| Author | Yang, Mingwei Czumaj, Artur Jiang, Shaofeng H.-C. Krauthgamer, Robert Vesely, Pavel |
| Author_xml | – sequence: 1 givenname: Artur surname: Czumaj fullname: Czumaj, Artur email: A.Czumaj@warwick.ac.uk organization: University of Warwick – sequence: 2 givenname: Shaofeng H.-C. surname: Jiang fullname: Jiang, Shaofeng H.-C. email: shaofeng.jiang@pku.edu.cn organization: Peking University – sequence: 3 givenname: Robert surname: Krauthgamer fullname: Krauthgamer, Robert email: robert.krauthgamer@weizmann.ac.il organization: Weizmann Institute of Science – sequence: 4 givenname: Pavel surname: Vesely fullname: Vesely, Pavel email: vesely@iuuk.mff.cuni.cz organization: Charles University – sequence: 5 givenname: Mingwei surname: Yang fullname: Yang, Mingwei email: yangmingwei@pku.edu.cn organization: Peking University |
| BookMark | eNotzN9KwzAYBfAoCq7TJ9CLvEBr_n1JcynVrkJhF9PrkTZft8iaSluEvb2VeXXgcH4nITdxiEjIE2cZ58w-l9tiB0qByQQTImOMAbsiCdcaFAC3cE1WAgykuQJ1R5Jp-mJMLSO1IsVuHtH1IR5o6dpwCvOZ1kPr5jBEGiKtwuFIX0OPcfprfoKjGxx6nMfQ0spNx0Xek9vOnSZ8-M81-SzfPooqrbeb9-KlToNgck4bxY3yVqFVreeNbrQxmOcSEa3MJdfWag9cOe874wRK24BvUGjO805YJ9fk8fIbFrL_HkPvxvPeLsyClr91_kwJ |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/FOCS54457.2022.00050 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISBN | 1665455195 9781665455190 |
| EISSN | 2575-8454 |
| EndPage | 461 |
| ExternalDocumentID | 9996956 |
| Genre | orig-research |
| GroupedDBID | --Z 29O 6IE 6IH 6IK ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-i203t-b4174d94e94cd1b6b677e883eee938316996d514addf7a2e39b5dbe26118f29a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000909382900042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:27:40 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-b4174d94e94cd1b6b677e883eee938316996d514addf7a2e39b5dbe26118f29a3 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_9996956 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Oct. |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct. |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings / annual Symposium on Foundations of Computer Science |
| PublicationTitleAbbrev | FOCS |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0040504 |
| Score | 2.339162 |
| Snippet | In Euclidean Uniform Facility Location, the input is a set of clients in \mathrm{R}^{d} and the goal is to place facilities to serve them, so as to minimize... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 450 |
| SubjectTerms | Approximation algorithms Complexity theory Computer science Costs facility location hash functions Heuristic algorithms high dimension Monte Carlo methods streaming algorithms sublinear algorithms |
| Title | Streaming Facility Location in High Dimension via Geometric Hashing |
| URI | https://ieeexplore.ieee.org/document/9996956 |
| WOSCitedRecordID | wos000909382900042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL1qKwZYCm0Rb3lgJDSJnTqeA6EDlEqA1K1y4hspQxPUl8Tf45ukhYGFLYqURLYV-5z7OAfglmOik9QLHIE-dywiFo42Eh1FOaEg8IVUpjKbkJNJOJupaQvu9r0wiFgVn-E9XVa5fFOmGwqVDQmcWzzfhraUsu7V2u26Fne4ommN81w1jF-jN9KZkZYC-pUmJ3XW_zJQqc6PuPu_Lx_D4KcRj033R8wJtLDoQXfnxMCaH7MHRy979dVVHyJKNeuFfYLFOqXi1y_2XNaxOZYXjGo72APJ-lOojG1zzZ6wXJC3VsrGtbvSAD7ix_do7DRmCU7uu3ztJMJyC6MEKpEaLxklIykxDLkdirIs1BvZERiLjux-lkntI1dJYBK0BMoLM19pfgqdoizwDJhFXanv2hdykwnNA-VhgF6IWUjkIgvPoU8zNP-s9TDmzeRc_H37Eg5pCeoCuCvorJcbvIaDdLvOV8ubahG_ARjdnTk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL0qBQlYCi2INx4YCY0faeK5EIpoSyWK1K1y4hspQxPUl8TfYydpYWBhiyIlkW3FPuc-zgG44xipKKaeI5BxxyBi4SjtoyNtTsjzmPClLswm_OEwmEzkqAb3214YRCyKz_DBXha5fJ3HKxsqa1twbvD8Dux6QjBadmtt9l2DPFxRNcdRV7bDt-67VZrxDQlkhSqn7a3_ZaFSnCBh43_fPoKTn1Y8MtoeMsdQw6wJjY0XA6l-zSYcDrb6q4sWdG2yWc3MEyRUsS1__SL9vIzOkTQjtrqDPFphfxssI-tUkWfMZ9ZdKya90l_pBD7Cp3G351R2CU7KXL50ImHYhZYCpYg1jTpRx_cxCLgZijQ8lHbMCLTBR2ZHS3zFkMvI0xEaCkWDhEnFT6Ge5RmeATG4K2aueSHXiVDckxQ9pAEmgaUXSXAOLTtD089SEWNaTc7F37dvYb83HvSn_Zfh6yUc2OUoy-GuoL6cr_Aa9uL1Ml3Mb4oF_QZ2mKCA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+annual+Symposium+on+Foundations+of+Computer+Science&rft.atitle=Streaming+Facility+Location+in+High+Dimension+via+Geometric+Hashing&rft.au=Czumaj%2C+Artur&rft.au=Jiang%2C+Shaofeng+H.-C.&rft.au=Krauthgamer%2C+Robert&rft.au=Vesely%2C+Pavel&rft.date=2022-10-01&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=450&rft.epage=461&rft_id=info:doi/10.1109%2FFOCS54457.2022.00050&rft.externalDocID=9996956 |