Automatic Mapping of Tropical Cyclone-Induced Coastal Inundation in SAR Imagery Based on Clustering of Deep Features

Researchers have already verified that the deep learning (DL) technology can realize accurate and robust mapping of tropical cyclone-induced coastal inundation in synthetic aperture radar imagery. In order to liberate the DL-based inundation mapping from human supervision, we propose to use the clus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE International Geoscience and Remote Sensing Symposium proceedings S. 5765 - 5768
Hauptverfasser: Liu, Bin, Li, Xiaofeng, Zheng, Gang
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 26.09.2020
Schlagworte:
ISSN:2153-7003
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Researchers have already verified that the deep learning (DL) technology can realize accurate and robust mapping of tropical cyclone-induced coastal inundation in synthetic aperture radar imagery. In order to liberate the DL-based inundation mapping from human supervision, we propose to use the clustering of deep convolutional autoencoder-generated features. The mapping results of Lekima 2019-induced inundation demonstrate the advantages and availability of the proposed method.
AbstractList Researchers have already verified that the deep learning (DL) technology can realize accurate and robust mapping of tropical cyclone-induced coastal inundation in synthetic aperture radar imagery. In order to liberate the DL-based inundation mapping from human supervision, we propose to use the clustering of deep convolutional autoencoder-generated features. The mapping results of Lekima 2019-induced inundation demonstrate the advantages and availability of the proposed method.
Author Liu, Bin
Zheng, Gang
Li, Xiaofeng
Author_xml – sequence: 1
  givenname: Bin
  surname: Liu
  fullname: Liu, Bin
  organization: College of Marine Sciences, Shanghai Ocean University,Shanghai,China,201306
– sequence: 2
  givenname: Xiaofeng
  surname: Li
  fullname: Li, Xiaofeng
  email: Xiaofeng.Li@ieee.org
  organization: Center for Ocean Mega-Science, Chinese Academy of Sciences,Qingdao,Shandong,China,266071
– sequence: 3
  givenname: Gang
  surname: Zheng
  fullname: Zheng, Gang
  organization: State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources,Hangzhou,Zhejiang,China,310012
BookMark eNotUN1KwzAYjaLgNn0Cb_ICnflp2vSyVp2FibDN6_El_ToiXVqa9GJvb8FdncPh_MBZkjvfeySEcrbmnBUv9abc7feyYDpdCybYupAiVaK4IUueC80zmafFLVkIrmSSMyYfyDKE35lowdiCxHKK_Rmis_QLhsH5E-1behj7wVnoaHWx3TyY1L6ZLDa06iHEWa_95Js51XvqPN2XO1qf4YTjhb5CmH2zXnVTiDheG98QB_qBEKcRwyO5b6EL-HTFFfn5eD9Un8n2e1NX5TZxgsmYGG5NW4AVoESTW9sCZFkOqKxhWWO1mamxbWMyxDRTqUahrTJaqZxnLVi5Is__vQ4Rj8PozjBejteH5B_CDWBc
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS39084.2020.9324529
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 1728163749
9781728163741
EISSN 2153-7003
EndPage 5768
ExternalDocumentID 9324529
Genre orig-research
GrantInformation_xml – fundername: Chinese Academy of Sciences
  grantid: XDA19090103
  funderid: 10.13039/501100002367
– fundername: Chinese Postdoctoral Science Foundation
  grantid: 2019M651474
  funderid: 10.13039/501100002858
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-b1cbf9ac2a52d7ccfaa667ae5cb06dc8bae5bcfdb6ee46548e28c5b855716fac3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664335305130&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 05:29:17 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-b1cbf9ac2a52d7ccfaa667ae5cb06dc8bae5bcfdb6ee46548e28c5b855716fac3
PageCount 4
ParticipantIDs ieee_primary_9324529
PublicationCentury 2000
PublicationDate 2020-Sept.-26
PublicationDateYYYYMMDD 2020-09-26
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-Sept.-26
  day: 26
PublicationDecade 2020
PublicationTitle IEEE International Geoscience and Remote Sensing Symposium proceedings
PublicationTitleAbbrev IGARSS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 1.7494749
Snippet Researchers have already verified that the deep learning (DL) technology can realize accurate and robust mapping of tropical cyclone-induced coastal inundation...
SourceID ieee
SourceType Publisher
StartPage 5765
SubjectTerms clustering
Coastal inundation mapping
deep convolutional autoen-coder (DCAE)
Feature extraction
Floods
Radar imaging
Radar polarimetry
Sea measurements
Sensors
Synthetic aperture radar
synthetic aperture radar (SAR) imagery
Title Automatic Mapping of Tropical Cyclone-Induced Coastal Inundation in SAR Imagery Based on Clustering of Deep Features
URI https://ieeexplore.ieee.org/document/9324529
WOSCitedRecordID wos000664335305130&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEF6stNBTH1r6Zg89NppsssnmaNNqhVZELXiTfcwWwSZik4L_vrsxWgq99LYsbBJmIN_Mzsz3IXQXB67WQDyHESCOQejYEVS7DqXg-zIMIOAlZf5LNBiw6TQe1tD9bhYGAMrmM2jZZVnLV5ks7FVZ28Qatk64h_aiKNzMam3_ur5BMnfbqePG7X6vMxqPTULP7MUJcVvV2V8iKiWGdI_-9_Zj1PwZxsPDHcycoBqkp-igVyryrhso7xR5VvKu4lduyRbecabxZJUtrflxspaLLAXHSnRIUDjJuIkHF7ifbuWU8DzF484I9z8sncUaPxhcU9jsJ4vCsihUT3wEWGIbMBYmQW-it-7TJHl2KikFZ05cP3eEJ4WOuSScEhVJqTkPw4gDlcINlWTCLIXUSoQAlmGNAWGSCkapyac0l_4Zqqfma88RtnVSc0K5UnmB1owJ41JFwUQ2IfN8fYEa1naz5YYtY1aZ7fLv7St0aN1jOzBIeI3q-aqAG7Qvv_L55-q2dPE3bCKp4w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61KnryjW9z8OjWNLvZZo-12ge2pbQVeit5TKRQd0vdFfrvTbYPEbx4C4FsQgb2m8nMfB9C91FAjAFa9jgF6lmEjjzJDPEYA99XYQCByCnz25Vul49GUa-AHja9MACQF59ByQ3zXL5OVOaeyh6tr-HyhFtomwUBJcturfV_17dYRta1OiR6bDWq_cHAhvTcPZ1QUlqt_iWjkqNI_eB_-x-i0592PNzbAM0RKkB8jHYbuSbv4gSl1SxNcuZV3BGObuEdJwYP58nMGQDXFmqaxOA5kQ4FGtcSYT3CKW7Fa0ElPInxoNrHrQ9HaLHATxbZNLbztWnmeBRWX3wGmGHnMmY2RD9Fb_WXYa3prcQUvAklfurJspImEooKRnVFKSNEGFYEMCVJqBWXdiiV0TIEcBxrHChXTHLGbERlhPLPUDG2pz1H2GVK7QpNlC4HxnAurVE1A-vbhLzsmwt04u5uPFvyZYxX13b59_Qd2msOO-1xu9V9vUL7zlSuHoOG16iYzjO4QTvqK518zm9zc38Da_KtKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Automatic+Mapping+of+Tropical+Cyclone-Induced+Coastal+Inundation+in+SAR+Imagery+Based+on+Clustering+of+Deep+Features&rft.au=Liu%2C+Bin&rft.au=Li%2C+Xiaofeng&rft.au=Zheng%2C+Gang&rft.date=2020-09-26&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=5765&rft.epage=5768&rft_id=info:doi/10.1109%2FIGARSS39084.2020.9324529&rft.externalDocID=9324529