Automatic Mapping of Tropical Cyclone-Induced Coastal Inundation in SAR Imagery Based on Clustering of Deep Features
Researchers have already verified that the deep learning (DL) technology can realize accurate and robust mapping of tropical cyclone-induced coastal inundation in synthetic aperture radar imagery. In order to liberate the DL-based inundation mapping from human supervision, we propose to use the clus...
Saved in:
| Published in: | IEEE International Geoscience and Remote Sensing Symposium proceedings pp. 5765 - 5768 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
26.09.2020
|
| Subjects: | |
| ISSN: | 2153-7003 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Researchers have already verified that the deep learning (DL) technology can realize accurate and robust mapping of tropical cyclone-induced coastal inundation in synthetic aperture radar imagery. In order to liberate the DL-based inundation mapping from human supervision, we propose to use the clustering of deep convolutional autoencoder-generated features. The mapping results of Lekima 2019-induced inundation demonstrate the advantages and availability of the proposed method. |
|---|---|
| ISSN: | 2153-7003 |
| DOI: | 10.1109/IGARSS39084.2020.9324529 |