Automatic Mapping of Tropical Cyclone-Induced Coastal Inundation in SAR Imagery Based on Clustering of Deep Features

Researchers have already verified that the deep learning (DL) technology can realize accurate and robust mapping of tropical cyclone-induced coastal inundation in synthetic aperture radar imagery. In order to liberate the DL-based inundation mapping from human supervision, we propose to use the clus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE International Geoscience and Remote Sensing Symposium proceedings S. 5765 - 5768
Hauptverfasser: Liu, Bin, Li, Xiaofeng, Zheng, Gang
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 26.09.2020
Schlagworte:
ISSN:2153-7003
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Researchers have already verified that the deep learning (DL) technology can realize accurate and robust mapping of tropical cyclone-induced coastal inundation in synthetic aperture radar imagery. In order to liberate the DL-based inundation mapping from human supervision, we propose to use the clustering of deep convolutional autoencoder-generated features. The mapping results of Lekima 2019-induced inundation demonstrate the advantages and availability of the proposed method.
ISSN:2153-7003
DOI:10.1109/IGARSS39084.2020.9324529