Automatic Mapping of Tropical Cyclone-Induced Coastal Inundation in SAR Imagery Based on Clustering of Deep Features
Researchers have already verified that the deep learning (DL) technology can realize accurate and robust mapping of tropical cyclone-induced coastal inundation in synthetic aperture radar imagery. In order to liberate the DL-based inundation mapping from human supervision, we propose to use the clus...
Uloženo v:
| Vydáno v: | IEEE International Geoscience and Remote Sensing Symposium proceedings s. 5765 - 5768 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
26.09.2020
|
| Témata: | |
| ISSN: | 2153-7003 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Researchers have already verified that the deep learning (DL) technology can realize accurate and robust mapping of tropical cyclone-induced coastal inundation in synthetic aperture radar imagery. In order to liberate the DL-based inundation mapping from human supervision, we propose to use the clustering of deep convolutional autoencoder-generated features. The mapping results of Lekima 2019-induced inundation demonstrate the advantages and availability of the proposed method. |
|---|---|
| ISSN: | 2153-7003 |
| DOI: | 10.1109/IGARSS39084.2020.9324529 |