Linear robust adaptive model predictive control: Computational complexity and conservatism

In this paper, we present a robust adaptive model predictive control (MPC) scheme for linear systems subject to parametric uncertainty and additive disturbances. The proposed approach provides a computationally efficient formulation with theoretical guarantees (constraint satisfaction and stability)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE Conference on Decision & Control S. 1383 - 1388
Hauptverfasser: Kohler, Johannes, Andina, Elisa, Soloperto, Raffaele, Muller, Matthias A., Allgower, Frank
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.12.2019
Schlagworte:
ISSN:2576-2370
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a robust adaptive model predictive control (MPC) scheme for linear systems subject to parametric uncertainty and additive disturbances. The proposed approach provides a computationally efficient formulation with theoretical guarantees (constraint satisfaction and stability), while allowing for reduced conservatism and improved performance due to online parameter adaptation. A moving window parameter set identification is used to compute a fixed complexity parameter set based on past data. Robust constraint satisfaction is achieved by using a computationally efficient tube based robust MPC method. The predicted cost function is based on a least mean squares point estimate, which ensures finite-gain ℒ 2 stability of the closed loop. The overall algorithm has a fixed (user specified) computational complexity. We illustrate the applicability of the approach and the trade-off between conservatism and computational complexity using a numerical example.
ISSN:2576-2370
DOI:10.1109/CDC40024.2019.9028970