Flaw Detection from Ultrasonic Images using YOLO and SSD
Non-destructive ultrasonic testing (UT) of materials is used for monitoring critical parts in power plants, aeronautics, oil and gas industry, and space industry. Due to a vast amount of time needed for a human expert to perform inspection it is practical for a computer to take over that task. Some...
Uloženo v:
| Vydáno v: | 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA) s. 163 - 168 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.09.2019
|
| Témata: | |
| ISSN: | 1849-2266 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Non-destructive ultrasonic testing (UT) of materials is used for monitoring critical parts in power plants, aeronautics, oil and gas industry, and space industry. Due to a vast amount of time needed for a human expert to perform inspection it is practical for a computer to take over that task. Some attempts have been made to produce algorithms for automatic UT scan inspection mainly using older, non-flexible analysis methods. In this paper, two deep learning based methods for flaw detection are presented, YOLO and SSD convolutional neural networks. The methods' performance was tested on a dataset that was acquired by scanning metal blocks containing different types of defects. YOLO achieved average precision (AP) of 89.7% while SSD achieved AP of 84.5 %. |
|---|---|
| ISSN: | 1849-2266 |
| DOI: | 10.1109/ISPA.2019.8868929 |