Power System Sensitivity Matrix Estimation by Multivariable Least Squares Considering Mitigating Data Saturation

To online estimate the power system sensitivity matrix considering mitigating data saturation, a series of multivariable least-squares (MLS) algorithms are proposed and compared, including the ordinary MLS (OMLS), the weighted MLS (WMLS), the memory-limited OMLS (ML-ORMLS), the memory-limited WRMLS...

Full description

Saved in:
Bibliographic Details
Published in:IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society pp. 1676 - 1683
Main Authors: Liang, Yingqi, Zhang, Junbo, Srinivasan, Dipti
Format: Conference Proceeding
Language:English
Published: IEEE 18.10.2020
Subjects:
ISSN:2577-1647
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To online estimate the power system sensitivity matrix considering mitigating data saturation, a series of multivariable least-squares (MLS) algorithms are proposed and compared, including the ordinary MLS (OMLS), the weighted MLS (WMLS), the memory-limited OMLS (ML-ORMLS), the memory-limited WRMLS (ML-WRMLS), and the memory-fading ML-WRMLS (MF-ML-WRMLS). Considering enhancing computational efficiency and accuracy by mitigating data saturation, the last three of them are specifically derived for sensitivity matrix online estimation using online-measured data. The effectiveness of the presented algorithms is verified and compared in the Nordic 32 system for voltage sensitivity matrix estimation. The results illustrate the prime algorithm in practice.
ISSN:2577-1647
DOI:10.1109/IECON43393.2020.9254668