P2SGrad: Refined Gradients for Optimizing Deep Face Models
Cosine-based softmax losses significantly improve the performance of deep face recognition networks. However, these losses always include sensitive hyper-parameters which can make training process unstable, and it is very tricky to set suitable hyper parameters for a specific dataset. This paper add...
Gespeichert in:
| Veröffentlicht in: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) S. 9898 - 9906 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2019
|
| Schlagworte: | |
| ISSN: | 1063-6919 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Cosine-based softmax losses significantly improve the performance of deep face recognition networks. However, these losses always include sensitive hyper-parameters which can make training process unstable, and it is very tricky to set suitable hyper parameters for a specific dataset. This paper addresses this challenge by directly designing the gradients for training in an adaptive manner. We first investigate and unify previous cosine softmax losses from the perspective of gradients. This unified view inspires us to propose a novel gradient called P2SGrad (Probability-to-Similarity Gradient), which leverages a cosine similarity instead of classification probability to control the gradients for updating neural network parameters. P2SGrad is adaptive and hyper-parameter free, which makes training process more efficient and faster. We evaluate our P2SGrad on three face recognition benchmarks, LFW, MegaFace, and IJB-C. The results show that P2SGrad is stable in training, robust to noise, and achieves state-of-the-art performance on all the three benchmarks. |
|---|---|
| AbstractList | Cosine-based softmax losses significantly improve the performance of deep face recognition networks. However, these losses always include sensitive hyper-parameters which can make training process unstable, and it is very tricky to set suitable hyper parameters for a specific dataset. This paper addresses this challenge by directly designing the gradients for training in an adaptive manner. We first investigate and unify previous cosine softmax losses from the perspective of gradients. This unified view inspires us to propose a novel gradient called P2SGrad (Probability-to-Similarity Gradient), which leverages a cosine similarity instead of classification probability to control the gradients for updating neural network parameters. P2SGrad is adaptive and hyper-parameter free, which makes training process more efficient and faster. We evaluate our P2SGrad on three face recognition benchmarks, LFW, MegaFace, and IJB-C. The results show that P2SGrad is stable in training, robust to noise, and achieves state-of-the-art performance on all the three benchmarks. |
| Author | Zhang, Xiao Gao, Mengya Qiao, Yu Wang, Xiaogang Zhao, Rui Yan, Junjie Li, Hongsheng |
| Author_xml | – sequence: 1 givenname: Xiao surname: Zhang fullname: Zhang, Xiao organization: Chinese Univ. of Hong Kong – sequence: 2 givenname: Rui surname: Zhao fullname: Zhao, Rui organization: SenseTime Group Limited – sequence: 3 givenname: Junjie surname: Yan fullname: Yan, Junjie organization: Sensetime Group Limited – sequence: 4 givenname: Mengya surname: Gao fullname: Gao, Mengya organization: Tianjin Univ – sequence: 5 givenname: Yu surname: Qiao fullname: Qiao, Yu organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences – sequence: 6 givenname: Xiaogang surname: Wang fullname: Wang, Xiaogang organization: Chinese Univ. of Hong Kong – sequence: 7 givenname: Hongsheng surname: Li fullname: Li, Hongsheng organization: Chinese Univ. of Hong Kong |
| BookMark | eNotzL1OwzAUQGGDQKKUzAwsfoGEe-0ktruhQAtSUavys1aOfY2MWidKssDTIwTT0becS3aWukSMXSMUiGBum_ftrhCApgAELE9YZpRGJTRKYaQ-ZTOEWua1QXPBsnH8BAApEGujZ2yxFS-rwfoF31GIiTz_VaQ0jTx0A9_0UzzG75g--D1Rz5fWEX_uPB3GK3Ye7GGk7L9z9rZ8eG0e8_Vm9dTcrfMoQE65EU6AC6AVhrZC5RSVOtRetAItGFdpLzVp4SoKUFrfmjYgKZC-llAqLefs5u8biWjfD_Foh6-9NpVUiPIHEXhH9Q |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2019.01014 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781728132938 1728132932 |
| EISSN | 1063-6919 |
| EndPage | 9906 |
| ExternalDocumentID | 8953711 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-92c20cf0871fb517c7e48f6d2b21a09c58d38e82c5ef04adb9bf1e703d6304783 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542649303053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 07:44:55 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-92c20cf0871fb517c7e48f6d2b21a09c58d38e82c5ef04adb9bf1e703d6304783 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_8953711 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-June |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-June |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.3102152 |
| Snippet | Cosine-based softmax losses significantly improve the performance of deep face recognition networks. However, these losses always include sensitive... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 9898 |
| SubjectTerms | and Body Pose Benchmark testing Biometrics ; Deep Learning ; Optimization Methods; Recognition: Detection Categorization Convergence Environmentally friendly manufacturing techniques Face Face recognition Gesture Gradient methods Neural networks Noise Optimization Retrieval Robustness Training |
| Title | P2SGrad: Refined Gradients for Optimizing Deep Face Models |
| URI | https://ieeexplore.ieee.org/document/8953711 |
| WOSCitedRecordID | wos000542649303053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4g8eAJFYzv9ODRhW67j5Yrip5wg49wI31MExIFwoIHf73tssGYePHW9jBNp69pZ775AG6k8evIr5RIJVpFiUuDfxd5ZJ1zidToaOYqsol8NBKTiSwacLvDwiBiFXyG3VCsfPl2YTbhq6wnZMrzAOTdy_Nsi9Xa_adw_5LJpKiz98RU9gZvxTjEbsluRUj7iz6luj2Grf_1ewidHxgeKXYXzBE0cH4MrdpuJPWuLNvQL9jzw0rZPhmj81ajJaEWgI4l8TYpefLHwsfsy8sgd4hLMlRecCBBey878Dq8fxk8RjUnQjRjlK8jyQyjxlH_znE6jXOTYyJcZplmsaLSpMJygYKZ1Ks5UVZL7WL029pmwcEm-Ak054s5ngJRUouQbYym2iaaOuXHzbkWmpkYLYvPoB1UMV1u015May2c_918AQdB19soqktorlcbvIJ987melavraq6-AZe_lT4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6ImugJFYxve_DoQrfdR8sVRYyIG0TDjfQxTUgUCAse_PW2ywZj4sVb28M0nb6mnfnmQ-haaLeO3EoJZKRkENnY-3eBBcZaGwkFliS2IJtI-30-Gomsgm42WBgAKILPoOGLhS_fzPTKf5U1uYhZ6oG823EUUbJGa21-VJh7yySCl_l7QiKa7bds4KO3RKOgpP1FoFLcH53q_3reR_UfIB7ONlfMAarA9BBVS8sRl_syr6FWRl_uF9K08ACssxsN9jUPdcyxs0rxszsYPiZfTga-BZjjjnSCPQ3ae15Hr527YbsblKwIwYQStgwE1ZRoS9xLx6o4THUKEbeJoYqGkggdc8M4cKpjp-hIGiWUDcFtbJN4FxtnR2hrOpvCMcJSKO7zjZFYmUgRK924GVNcUR2CoeEJqnlVjOfrxBfjUgunfzdfod3u8Kk37j30H8_Qntf7OqbqHG0tFyu4QDv6cznJF5fFvH0DjWWYhQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=P2SGrad%3A+Refined+Gradients+for+Optimizing+Deep+Face+Models&rft.au=Zhang%2C+Xiao&rft.au=Zhao%2C+Rui&rft.au=Yan%2C+Junjie&rft.au=Gao%2C+Mengya&rft.date=2019-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=9898&rft.epage=9906&rft_id=info:doi/10.1109%2FCVPR.2019.01014&rft.externalDocID=8953711 |