Improving Multiple Time Series Forecasting with Data Stream Mining Algorithms
This paper proposes a hybrid ensemble learning approach that combines statistical and data stream mining algorithms to obtain better forecasting performance in multiple time series prediction problems. Although some multiple time series algorithms perform surprisingly well in a variety of domains, i...
Uložené v:
| Vydané v: | Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics s. 1060 - 1067 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
11.10.2020
|
| Predmet: | |
| ISSN: | 2577-1655 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!