Algorithms for a Variant of the Full Steiner Tree Problem

This paper studies a variant of the Steiner tree problem in the Euclidean plane ℝ 2 : the minimum-number of a specific material for the full Steiner tree problem (MNFST, for short). This question is an extension of the Steiner tree problem and the full Steiner tree problem. It has a wide range of ap...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 IEEE/ACIS 19th International Conference on Computer and Information Science (ICIS) s. 16 - 21
Hlavní autoři: Wang, Haiyan, Huang, Binchao, Li, Jianping
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 23.06.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper studies a variant of the Steiner tree problem in the Euclidean plane ℝ 2 : the minimum-number of a specific material for the full Steiner tree problem (MNFST, for short). This question is an extension of the Steiner tree problem and the full Steiner tree problem. It has a wide range of applications in real life. The MNFST has been shown to be NP-hard. In this paper, we propose two asymptotic polynomial-time approximation algorithms for this problem. These two algorithms satisfy OUT ≤ 2.428OPT + 1 and OUT \leq 2.123sOPT + \frac{3}{2}, respectively.
DOI:10.1109/ICIS51600.2021.9516853