Applications Of Feature Weighted Fuzzy C-Means Clustering And Genetic Algorithm Optimization For Load Identification In NILM Systems
An improved fuzzy clustering non-invasive load monitoring method based on genetic algorithm for feature weight optimization is proposed. The non-intrusive load monitoring research needs to extract the features of electrical appliance waveform data, which has the problems of large number of features...
Uložené v:
| Vydané v: | International Conference on Wavelet Analysis and Pattern Recognition (Print) s. 72 - 77 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
02.12.2020
|
| Predmet: | |
| ISSN: | 2158-5709 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!