Robust online joint state/input/parameter estimation of linear systems

This paper presents a method for jointly estimating the state, input, and parameters of linear systems in an online fashion. The method is specially designed for measurements that are corrupted with non-Gaussian noise or outliers, which are commonly found in engineering applications. In particular,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the IEEE Conference on Decision & Control s. 2153 - 2158
Hlavní autori: Brouillon, Jean-Sebastien, Moffat, Keith, Dorfler, Florian, Ferrari-Trecate, Giancarlo
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 06.12.2022
Predmet:
ISSN:2576-2370
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents a method for jointly estimating the state, input, and parameters of linear systems in an online fashion. The method is specially designed for measurements that are corrupted with non-Gaussian noise or outliers, which are commonly found in engineering applications. In particular, it combines recursive, alternating, and iteratively-reweighted least squares into a single, one-step algorithm, which solves the estimation problem online and benefits from the robustness of least-deviation regression methods. The convergence of the iterative method is formally guaranteed. Numerical experiments show the good performance of the estimation algorithm in presence of outliers and in comparison to state-of-the-art methods.
ISSN:2576-2370
DOI:10.1109/CDC51059.2022.9992925