Continuous-Time Optimization of Time-Varying Cost Functions via Finite-Time Stability with Pre-Defined Convergence Time
In this paper, we propose a new family of continuous-time optimization algorithms for time-varying, locally strongly convex cost functions, based on discontinuous second-order gradient optimization flows with provable finite-time convergence to local optima. To analyze our flows, we first extend a w...
Uloženo v:
| Vydáno v: | Proceedings of the American Control Conference s. 88 - 93 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
AACC
01.07.2020
|
| Témata: | |
| ISSN: | 2378-5861 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we propose a new family of continuous-time optimization algorithms for time-varying, locally strongly convex cost functions, based on discontinuous second-order gradient optimization flows with provable finite-time convergence to local optima. To analyze our flows, we first extend a well-know Lyapunov inequality condition for finite-time stability, to the case of arbitrary time-varying differential inclusions, particularly of the Filippov type. We then prove the convergence of our proposed flows in finite time. We illustrate the performance of our proposed flows on a quadratic cost function to track a decaying sinusoid. |
|---|---|
| ISSN: | 2378-5861 |
| DOI: | 10.23919/ACC45564.2020.9147809 |