Privacy-Preserving Approximate Top-k Nearest Keyword Queries over Encrypted Graphs
With the prosperity of graph-based applications, it is increasingly popular for graph nodes to have labels in terms of a set of keywords. The top-k nearest keyword (k-NK) query can find a set of k nearest nodes containing a designated keyword to a given source node. In cloud computing era, graph own...
Uložené v:
| Vydané v: | 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS) s. 1 - 10 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
25.06.2021
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | With the prosperity of graph-based applications, it is increasingly popular for graph nodes to have labels in terms of a set of keywords. The top-k nearest keyword (k-NK) query can find a set of k nearest nodes containing a designated keyword to a given source node. In cloud computing era, graph owners prefer to outsource their graphs to cloud servers, leading to severe privacy risk for conducting k-NK queries. The current studies fail to support efficient and accurate k-NK query under the premise of privacy protection.In this paper, we propose a new graph encryption scheme Aton, which enables efficient and privacy-preserving k-NK querying. Based on the symmetric-key encryption and particular pseudo-random functions, we construct a secure k-NK query index. Aton is built on a ciphertext sum comparison scheme which can achieve approximate distance comparison with high accuracy. Rigorous security analysis proves that it is CQA-2 secure. Experiments with real-world datasets demonstrate that it can efficiently answer k-NK queries with more accurate results compared with the state-of-the-art. |
|---|---|
| DOI: | 10.1109/IWQOS52092.2021.9521317 |