A Biochemical Fault Detection Method Based on Stack Noise Reduction Sparse Automatic Encoder

A method based on stack noise reduction sparse automatic coder is proposed for biochemical process fault detection. Based on SDSA, softmax classifier is introduced to build a deep neural network model, and particle swarm optimization algorithm is used to optimize the parameters of the model to impro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chinese Control and Decision Conference s. 5344 - 5349
Hlavní autoři: Wang, Ping, Chu, Zhigang, Sun, Lupeng
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.08.2020
Témata:
ISSN:1948-9447
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A method based on stack noise reduction sparse automatic coder is proposed for biochemical process fault detection. Based on SDSA, softmax classifier is introduced to build a deep neural network model, and particle swarm optimization algorithm is used to optimize the parameters of the model to improve the sensitivity of the model in fault detection. The effectiveness of the proposed method is verified by the simulation of Eastman process in Tennessee.
ISSN:1948-9447
DOI:10.1109/CCDC49329.2020.9164763